期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
面向智慧农场建设的大田农业数字技术集成与应用模式研究
1
作者 董守田 潘龙 +1 位作者 程运江 韩龙 《智慧农业导刊》 2025年第16期1-6,共6页
随着智慧农业深入推进,大田农业急需实现从传统经验管理向数据驱动与智能决策转型。该文系统梳理数字技术在大田农业中的集成应用路径,聚焦作物长势监测、灾损识别、产量预测与农机智能调度等关键环节,提出面向智慧农场建设的数字农业... 随着智慧农业深入推进,大田农业急需实现从传统经验管理向数据驱动与智能决策转型。该文系统梳理数字技术在大田农业中的集成应用路径,聚焦作物长势监测、灾损识别、产量预测与农机智能调度等关键环节,提出面向智慧农场建设的数字农业系统架构。研究总结遥感感知、作物建模、调度算法与平台联动的协同机制,并在典型区域开展部署实践,验证其可操作性与推广价值。结合实际应用中暴露的共性问题,该文提出包括标准体系建设、服务机制优化、人才支撑与政策引导在内的多维推广策略,为我国智慧农场发展和农业现代化提供可复制的技术路径与决策参考。 展开更多
关键词 智慧农场 大田农业 数字农业 作物模型 农机调度
在线阅读 下载PDF
基于YOLOv8n改进的水稻病害轻量化检测
2
作者 郭丽峰 黄俊杰 +5 位作者 吴禹竺 王思吉 王轶哲 包羽健 苏中滨 刘宏新 《农业工程学报》 北大核心 2025年第8期156-164,共9页
为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile blo... 为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile block,iRMB)增强小目标特征捕捉能力,采用变形卷积模块DCNv2(deformable convolutional networks)优化目标几何变化适应性,结合采样算子DySample(dynamic sample)算法提升复杂环境适应能力,并改进快速空间金字塔池化模块(spatial pyramid pooling fast,SPPF)为大核分离卷积注意力模块(large separable kernel attention,LSKA)增强多尺度特征融合。试验结果表明,改进的YOLOv8-DiDL模型准确率、召回率和平均精度均值分别为91.4%、83.5%、90.8%;与原始基础网络YOLOv8n相比分别提升7.0、0.5、2.5个百分点,模型权重降低9.7%,每秒浮点运算次数提升7.4%。该研究通过改进模型显著提高了水稻病害检测的精度和部署效率,为智能化农业的实时病害监测提供了技术基础。 展开更多
关键词 水稻 病害 目标检测 YOLOv8n改进模型 卷积神经网络 模型轻量化设计
在线阅读 下载PDF
Seedling Stage Corn Line Detection Method Based on Improved YOLOv8
3
作者 LI Hongbo TIAN Xin +5 位作者 RUAN Zhiwen LIU Shaowen REN Weiqi SU Zhongbin GAO Rui KONG Qingming 《智慧农业(中英文)》 CSCD 2024年第6期72-84,共13页
[Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under c... [Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under challenging conditions,such as strong light exposure and weed interference.The aims are to develop an effective crop line extraction method by combining YOLOv8-G,Affinity Propagation,and the Least Squares method to enhance detection accuracy and performance in complex field environments.[Methods]The proposed method employs machine vision techniques to address common field challenges.YOLOv8-G,an improved object detection algorithm that combines YOLOv8 and Ghost‐NetV2 for lightweight,high-speed performance,was used to detect the central points of crops.These points were then clustered using the Affinity Propagation algorithm,followed by the application of the Least Squares method to extract the crop lines.Comparative tests were conducted to evaluate multiple backbone networks within the YOLOv8 framework,and ablation studies were performed to validate the enhancements made in YOLOv8-G.[Results and Discussions]The performance of the proposed method was compared with classical object detection and clustering algorithms.The YOLOv8-G algorithm achieved average precision(AP)values of 98.22%,98.15%,and 97.32%for corn detection at 7,14,and 21 days after emergence,respectively.Additionally,the crop line extraction accuracy across all stages was 96.52%.These results demonstrate the model's ability to maintain high detection accuracy despite challenging conditions in the field.[Conclusions]The proposed crop line extraction method effectively addresses field challenges such as lighting and weed interference,enabling rapid and accurate crop identification.This approach supports the automatic navigation of agricultural machinery,offering significant improvements in the precision and efficiency of field operations. 展开更多
关键词 crop row detection YOLOv8-G BACKBONE affinity propagation least square method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部