基于检索增强生成(RAG)的军事领域知识问答系统已经逐渐成为现代情报人员收集和分析情报的重要工具。针对目前RAG方法的应用策略中的混合检索存在可移植性不强以及非必要使用查询改写容易诱发语义漂移的问题,提出一种多策略检索增强生成...基于检索增强生成(RAG)的军事领域知识问答系统已经逐渐成为现代情报人员收集和分析情报的重要工具。针对目前RAG方法的应用策略中的混合检索存在可移植性不强以及非必要使用查询改写容易诱发语义漂移的问题,提出一种多策略检索增强生成(MSRAG)方法。首先,根据用户输入的查询特点自适应地匹配检索模型来召回相关文本;其次,利用文本过滤器提取出能够回答问题的关键文本片段;再次,使用文本过滤器进行内容有效性判断以启动基于同义词拓展的查询改写,并将初始查询与改写后的信息合并输入检索控制器以进行更有针对性的再次检索;最后,合并能够回答问题的关键文本片段和问题,并使用提示工程输入生成答案模型来生成响应返回给用户。实验结果表明,MSRAG方法在军事领域数据集(Military)和Medical数据集的ROUGE-L(Recall-Oriented Understudy for Gisting Evaluation Longest common subsequence)指标上相较于凸线性组合RAG方法分别提高了14.35和5.83个百分点。可见,MSRAG方法具备较强的通用性和可移植性,能够缓解非必要查询改写导致的语义漂移现象,有效帮助大模型生成更准确的答案。展开更多
文摘基于检索增强生成(RAG)的军事领域知识问答系统已经逐渐成为现代情报人员收集和分析情报的重要工具。针对目前RAG方法的应用策略中的混合检索存在可移植性不强以及非必要使用查询改写容易诱发语义漂移的问题,提出一种多策略检索增强生成(MSRAG)方法。首先,根据用户输入的查询特点自适应地匹配检索模型来召回相关文本;其次,利用文本过滤器提取出能够回答问题的关键文本片段;再次,使用文本过滤器进行内容有效性判断以启动基于同义词拓展的查询改写,并将初始查询与改写后的信息合并输入检索控制器以进行更有针对性的再次检索;最后,合并能够回答问题的关键文本片段和问题,并使用提示工程输入生成答案模型来生成响应返回给用户。实验结果表明,MSRAG方法在军事领域数据集(Military)和Medical数据集的ROUGE-L(Recall-Oriented Understudy for Gisting Evaluation Longest common subsequence)指标上相较于凸线性组合RAG方法分别提高了14.35和5.83个百分点。可见,MSRAG方法具备较强的通用性和可移植性,能够缓解非必要查询改写导致的语义漂移现象,有效帮助大模型生成更准确的答案。