期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
提高回归模型拟合优度的策略(Ⅱ)——算术均值变换与其他变量变换 被引量:7
1
作者 胡良平 《四川精神卫生》 2019年第1期9-15,共7页
本文目的是介绍第二种提高回归模型拟合优度的策略,即算术均值变换与其他变量变换。具体方法包括以下几个方面:①对多值名义自变量采取"算术均值变换";②对定量自变量引入派生变量,包括"对数变换""平方根变换&... 本文目的是介绍第二种提高回归模型拟合优度的策略,即算术均值变换与其他变量变换。具体方法包括以下几个方面:①对多值名义自变量采取"算术均值变换";②对定量自变量引入派生变量,包括"对数变换""平方根变换""指数变换""平方变换""立方变换"和"交叉乘积变换"的结果;③对定量因变量分别采取"对数变换""平方根变换""指数变换""倒数变换"和"Logistic变换";④构建回归模型时,在假定"包含截距项"与"不含截距项"的条件下,分别采取"前进法""后退法"和"逐步法"筛选自变量。得到了如下结论:①对定量因变量和自变量不做变量变换时,回归模型的拟合优度非常差;②根据资料所具备的条件,对定量因变量采取不同的变量变换方法,其回归模型的拟合优度是不同的;③对多值名义自变量进行"算术均值变换"是合理的,且有助于提高回归模型拟合优度;④对定量自变量引入派生变量是非常有价值的;⑤假定回归模型中不含截距项有助于提高回归模型的拟合优度。 展开更多
关键词 变量变换 算术均值变换 Logistic变换 派生变量 拟合优度
在线阅读 下载PDF
提高回归模型拟合优度的策略(Ⅰ)——哑变量变换与其他变量变换 被引量:6
2
作者 胡良平 《四川精神卫生》 2019年第1期1-8,共8页
本文目的是介绍第一种提高回归模型拟合优度的策略,即哑变量变换与其他变量变换。具体方法包括以下几个方面:①对多值名义自变量采取"哑变量变换";②对定量和有序自变量引入派生变量,包括"对数变换""平方根变... 本文目的是介绍第一种提高回归模型拟合优度的策略,即哑变量变换与其他变量变换。具体方法包括以下几个方面:①对多值名义自变量采取"哑变量变换";②对定量和有序自变量引入派生变量,包括"对数变换""平方根变换""指数变换""平方变换""立方变换"和"交叉乘积变换"的结果;③对定量因变量分别采取"对数变换""平方根变换""指数变换""倒数变换"和"Logistic变换";④构建回归模型时,在假定"包含截距项"与"不含截距项"的条件下,分别采取"前进法""后退法"和"逐步法"筛选自变量。得到了如下几个结论:①对定量因变量和自变量不做变量变换时,回归模型的拟合优度非常差;②根据资料所具备的条件,对定量因变量采取不同的变量变换方法,其回归模型的拟合优度是不尽相同的;③对多值名义自变量进行"哑变量变换"是常规的做法,但存在不足之处;④对定量自变量引入派生变量是非常有价值的;⑤假定回归模型中不含截距项有助于提高回归模型的拟合优度。 展开更多
关键词 变量变换 哑变量变换 Logistic变换 派生变量 拟合优度
在线阅读 下载PDF
提高回归模型拟合优度的策略(Ⅳ)——优化计分变换与其他变量变换 被引量:6
3
作者 胡良平 《四川精神卫生》 2019年第1期21-28,共8页
本文目的是介绍第四种提高回归模型拟合优度的策略,即优化计分变换与其他变量变换。具体方法包括以下几个方面:①第一,对多值名义自变量采取"优化计分变换";②对有序自变量分别采取"单调变换"与"优化计分变换&... 本文目的是介绍第四种提高回归模型拟合优度的策略,即优化计分变换与其他变量变换。具体方法包括以下几个方面:①第一,对多值名义自变量采取"优化计分变换";②对有序自变量分别采取"单调变换"与"优化计分变换";③对定量自变量分别采取"样条变换"和"单调样条变换";④对定量因变量分别采取"样条变换""单调样条变换"和"BOX-COX变换"。全部变量变换方法组合起来共12种,共创建了12个多重非线性回归模型。依据"拟合优度评价指标"的取值,从12个回归模型中挑选出一个,即本文中的"模型1",其"均方误差平方根=0.30935、R^2=0.9586、调整R^2=0.9527"。结合本期科研方法专题同类文章的结果和结论,得出提高回归模型拟合优度的策略主要在于以下四点:①应对"定量因变量""定量自变量"和"多值有序自变量"采取合适的变量变换方法;②在拟合回归模型的过程中,应尽可能多地引入派生变量;③应假定回归模型中不含截距项;④在构建回归模型的过程中,应尽可能多地使用筛选自变量的策略,如"前进法""后退法"和"逐步法"。 展开更多
关键词 优化计分变换 单调变换 样条变换 BOX-COX变换
在线阅读 下载PDF
提高回归模型拟合优度的策略(Ⅲ)——校正均值变换与其他变量变换 被引量:5
4
作者 胡良平 《四川精神卫生》 2019年第1期16-20,共5页
本文目的是介绍第三种提高回归模型拟合优度的策略,即校正均值变换与其他变量变换。具体方法包括以下几个方面:①对多值名义自变量采取"校正均值变换";②对定量自变量引入派生变量,包括"对数变换""平方根变换&... 本文目的是介绍第三种提高回归模型拟合优度的策略,即校正均值变换与其他变量变换。具体方法包括以下几个方面:①对多值名义自变量采取"校正均值变换";②对定量自变量引入派生变量,包括"对数变换""平方根变换""指数变换""平方变换""立方变换"和"交叉乘积变换"的结果;③对定量因变量分别采取"对数变换""平方根变换""指数变换""倒数变换"和"Logistic变换";④构建回归模型时,在假定"包含截距项"与"不含截距项"的条件下,分别采取"前进法""后退法"和"逐步法"筛选自变量。得到了如下结论:①对定量因变量和自变量不做变量变换时,回归模型的拟合优度非常低;②根据资料所具备的条件,对定量因变量采取不同的变量变换方法,其回归模型的拟合优度是不同的;③对多值名义自变量进行"校正均值变换"是合理的,且有助于提高回归模型拟合优度;④对定量自变量引入派生变量是非常有价值的;⑤假定回归模型中不含截距项有助于提高回归模型的拟合优度。 展开更多
关键词 变量变换 校正均值变换 Logistic变换 派生变量 拟合优度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部