针对传统高光谱图像分类算法存在特征信息利用率不足且无法有效降低特征图空间冗余的问题,提出一种改进的基于混合卷积的多尺度模型MH-CNN,该模型使用多尺度3DCNN模块对高光谱图像进行空间特征和光谱特征的初步提取,然后采用嵌入了空间...针对传统高光谱图像分类算法存在特征信息利用率不足且无法有效降低特征图空间冗余的问题,提出一种改进的基于混合卷积的多尺度模型MH-CNN,该模型使用多尺度3DCNN模块对高光谱图像进行空间特征和光谱特征的初步提取,然后采用嵌入了空间重建模块的多尺度2DCNN网络对特征图的深层空间特征做进一步的提取和优化,最后通过全连接层对高光谱遥感图像进行精准分类。实验在Indian Pines、Pavia Centre和Pavia University 3种开源数据集上进行,选取了7种经典的分类方法作为对比。MH-CNN算法在3个数据集上的总体精度分别达到了97.7%、99.2%和98.5%。实验结果表明,MH-CNN算法使得高光谱图像中的空谱特征都得到了充分的利用,同时有效减少了特征图的空间冗余,相比于其他模型提高了分类精度,具有较好的综合性能。展开更多
文摘针对传统高光谱图像分类算法存在特征信息利用率不足且无法有效降低特征图空间冗余的问题,提出一种改进的基于混合卷积的多尺度模型MH-CNN,该模型使用多尺度3DCNN模块对高光谱图像进行空间特征和光谱特征的初步提取,然后采用嵌入了空间重建模块的多尺度2DCNN网络对特征图的深层空间特征做进一步的提取和优化,最后通过全连接层对高光谱遥感图像进行精准分类。实验在Indian Pines、Pavia Centre和Pavia University 3种开源数据集上进行,选取了7种经典的分类方法作为对比。MH-CNN算法在3个数据集上的总体精度分别达到了97.7%、99.2%和98.5%。实验结果表明,MH-CNN算法使得高光谱图像中的空谱特征都得到了充分的利用,同时有效减少了特征图的空间冗余,相比于其他模型提高了分类精度,具有较好的综合性能。