针对传统孪生目标跟踪算法体量大、难以在嵌入式设备部署以及其在目标尺度变化大、有相似物干扰等条件下效果不佳的问题,提出一种新的轻量化快速跟踪(Ghost fast Tracking with TiFPN and Retriever,GTtracker)算法。引入Ghost机制,对Re...针对传统孪生目标跟踪算法体量大、难以在嵌入式设备部署以及其在目标尺度变化大、有相似物干扰等条件下效果不佳的问题,提出一种新的轻量化快速跟踪(Ghost fast Tracking with TiFPN and Retriever,GTtracker)算法。引入Ghost机制,对Resnet网络进行重新设计,构建一种轻量化G-Resnet网络对跟踪目标进行快速特征提取。设计轻量自适应加权融合(Tiny adaptive weighted fusion algorithm Feature Pyramid Network,TiFPN)算法,进一步加强特征信息的融合,解决相似物干扰问题。设计一种轻量化区域回归网络(Ghost Decoupled Net,GDnet),以实现目标分类、交并比(Intersection-over-Union,IoU)计算以及边界框回归,并在跟踪阶段应用一种新的目标寻回器提升算法跟踪的成功率。在OTB100数据集和VOT2020数据集上进行算法验证,并移植算法到嵌入式设备Jetson Xavier NX上进行性能测试。实验结果均表明算法的有效性和优越性,相比经典孪生目标跟踪(SiamCAR)算法,新方法在精度和期望平均重叠率(Expected Average Overlap,EAO)指标均相似的前提下,能够实现更快的运行速度,可在Jetson Xavier NX上实时运行,达到30帧/s,且能有效解决相似物干扰、尺度变化大等问题。展开更多
为提高复杂背景下异源绝缘子的故障检测准确率,本文提出一种基于异源图像下的改进YOLOv7模型的绝缘子故障识别方法。为突出绝缘子的位置以及故障信息对异源绝缘子图像进行配准融合,为降低计算复杂度以及获得更高的可移植性,将原YOLOv7...为提高复杂背景下异源绝缘子的故障检测准确率,本文提出一种基于异源图像下的改进YOLOv7模型的绝缘子故障识别方法。为突出绝缘子的位置以及故障信息对异源绝缘子图像进行配准融合,为降低计算复杂度以及获得更高的可移植性,将原YOLOv7的主干特征提取网络换为MOBELINET网络,为减少复杂背景下绝缘子的漏检、误检等问题,将原YOLOv7的损失函数由Complete-intersection-Over-Union(CIOU)改为FOICAL-EIOU进一步提高模型预测框的回归效果。最后在YOLOv7检测头部分引入可变形卷积Deformable Convolution Network2(DCNv2)加强对不同尺度大小绝缘子发热故障区域的适应能力。实验结果表明改进的模型Mean Average Precision(mAP)值为96.6%,比原YOLOv7模型mAP值提高9.9%,参数量下降了30.5%,浮点运算数下降了49.2%,较YOLOV5、YOLOV8目标检测模型mAP值分别提高12.2%、12.4%。所提出的改进模型可以有效实现异源绝缘子的故障检测与识别。展开更多
为准确、快速地识别高压输电线路关键部件典型小目标故障,提出一种基于图像双分割与HSV空间颜色和HELM3纹理融合特征的高压输电线路典型小目标故障识别方法。该方法以航拍高压输电线路关键部件故障图像为原始数据,其中包括线夹偏移、绝...为准确、快速地识别高压输电线路关键部件典型小目标故障,提出一种基于图像双分割与HSV空间颜色和HELM3纹理融合特征的高压输电线路典型小目标故障识别方法。该方法以航拍高压输电线路关键部件故障图像为原始数据,其中包括线夹偏移、绝缘子破损、引流线松股、链接金具锈蚀、铁塔杂物等典型小目标故障,以双分割后图像为研究对象,提取色度,饱和度,数值(hue,saturation,value,HSV)空间9个颜色特征、3层小波分解高频协方差矩阵与低频低阶矩(high frequency covariance matrix eigenvalues and lowfrequencylowerordermomentsin3-layerwavelet domain,HELM3)的18个不变纹理特征,进行支持向量机(supportvectormachine,SVM)的输电线路典型小目标故障分类识别。试验结果表明:在SVM识别模型下对高压输电线路典型小目标故障进行分类,该文的HSV和HELM3特征融合方法,相比于二者单独进行识别,平均识别率分别提高了10.89%和10.19%,达到92.64%;在不同分类模式下,该文SVM分类器的识别率比贝叶斯分类器、K近邻算法(K-nearest neighbor,KNN)分类器平均识别率提高了至少10个百分点,有明显的识别优势。展开更多
为了实现高光谱图像的快速训练、分类和超参数自适应寻优,提出基于深层残差3D卷积神经网络(3D-CNN)的高光谱图像识别分类算法.由于采用的3D特征提取算法更适合高光谱3D数据结构,使得网络可以快速地从完整的高光谱图像样本中同时提取丰...为了实现高光谱图像的快速训练、分类和超参数自适应寻优,提出基于深层残差3D卷积神经网络(3D-CNN)的高光谱图像识别分类算法.由于采用的3D特征提取算法更适合高光谱3D数据结构,使得网络可以快速地从完整的高光谱图像样本中同时提取丰富的空间和光谱特征;此外,通过对高光谱图像样本平面空间方向的旋转和翻转操作进行数据增强的方法;以及运用TPE超参数优化算法对设定的超参数选择空间自适应寻优的方法,都可以有效地提高分类准确率.通过在TensorFlow框架下对Pavia University, Indian Pines和KSC等标准高光谱数据集上的实验结果表明,与SSRN等其他算法相比,文中算法在加深网络结构的同时,提高了分类准确率;与人工设定超参数网络相比,以TPE自适应超参数优化算法优化的网络参数数量减少约一半,训练时间缩短约10%.展开更多
文摘为提高复杂背景下异源绝缘子的故障检测准确率,本文提出一种基于异源图像下的改进YOLOv7模型的绝缘子故障识别方法。为突出绝缘子的位置以及故障信息对异源绝缘子图像进行配准融合,为降低计算复杂度以及获得更高的可移植性,将原YOLOv7的主干特征提取网络换为MOBELINET网络,为减少复杂背景下绝缘子的漏检、误检等问题,将原YOLOv7的损失函数由Complete-intersection-Over-Union(CIOU)改为FOICAL-EIOU进一步提高模型预测框的回归效果。最后在YOLOv7检测头部分引入可变形卷积Deformable Convolution Network2(DCNv2)加强对不同尺度大小绝缘子发热故障区域的适应能力。实验结果表明改进的模型Mean Average Precision(mAP)值为96.6%,比原YOLOv7模型mAP值提高9.9%,参数量下降了30.5%,浮点运算数下降了49.2%,较YOLOV5、YOLOV8目标检测模型mAP值分别提高12.2%、12.4%。所提出的改进模型可以有效实现异源绝缘子的故障检测与识别。
文摘为准确、快速地识别高压输电线路关键部件典型小目标故障,提出一种基于图像双分割与HSV空间颜色和HELM3纹理融合特征的高压输电线路典型小目标故障识别方法。该方法以航拍高压输电线路关键部件故障图像为原始数据,其中包括线夹偏移、绝缘子破损、引流线松股、链接金具锈蚀、铁塔杂物等典型小目标故障,以双分割后图像为研究对象,提取色度,饱和度,数值(hue,saturation,value,HSV)空间9个颜色特征、3层小波分解高频协方差矩阵与低频低阶矩(high frequency covariance matrix eigenvalues and lowfrequencylowerordermomentsin3-layerwavelet domain,HELM3)的18个不变纹理特征,进行支持向量机(supportvectormachine,SVM)的输电线路典型小目标故障分类识别。试验结果表明:在SVM识别模型下对高压输电线路典型小目标故障进行分类,该文的HSV和HELM3特征融合方法,相比于二者单独进行识别,平均识别率分别提高了10.89%和10.19%,达到92.64%;在不同分类模式下,该文SVM分类器的识别率比贝叶斯分类器、K近邻算法(K-nearest neighbor,KNN)分类器平均识别率提高了至少10个百分点,有明显的识别优势。
文摘为了实现高光谱图像的快速训练、分类和超参数自适应寻优,提出基于深层残差3D卷积神经网络(3D-CNN)的高光谱图像识别分类算法.由于采用的3D特征提取算法更适合高光谱3D数据结构,使得网络可以快速地从完整的高光谱图像样本中同时提取丰富的空间和光谱特征;此外,通过对高光谱图像样本平面空间方向的旋转和翻转操作进行数据增强的方法;以及运用TPE超参数优化算法对设定的超参数选择空间自适应寻优的方法,都可以有效地提高分类准确率.通过在TensorFlow框架下对Pavia University, Indian Pines和KSC等标准高光谱数据集上的实验结果表明,与SSRN等其他算法相比,文中算法在加深网络结构的同时,提高了分类准确率;与人工设定超参数网络相比,以TPE自适应超参数优化算法优化的网络参数数量减少约一半,训练时间缩短约10%.