基于第一性原理研究 M(M =Ti,V,Cr,Mn,Co和Ni)掺杂α-Fe(N)的结合能、电子结构及力学性能。计算结果表明,Ti和V优先占据晶胞的顶角位置,Cr和Mn优先占据晶胞的体心位置,Co和Ni与N不相邻时结构最稳定。Ti与V的掺杂加强了晶胞的稳定性,Cr,...基于第一性原理研究 M(M =Ti,V,Cr,Mn,Co和Ni)掺杂α-Fe(N)的结合能、电子结构及力学性能。计算结果表明,Ti和V优先占据晶胞的顶角位置,Cr和Mn优先占据晶胞的体心位置,Co和Ni与N不相邻时结构最稳定。Ti与V的掺杂加强了晶胞的稳定性,Cr, Mn与Ni的掺杂削弱了晶胞的稳定性,Co的掺杂不影响晶胞的稳定性。这些过渡金属在α-Fe晶胞中均存在金属键和离子键的共同作用,成键轨道主要来自 M 3d, Fe4s3p3d与N2p。与纯α-Fe体系相比,掺杂体系刚性均变强,经计算可得α-Fe(N)-V体系的弹性模量 E 、剪切模量 G 和体积模量 B 均为最大值,即掺杂V可显著提高材料的力学性能,V是最有效的固氮元素,与高氮钢冶炼的实验结果相吻合。展开更多
白云鄂博铁矿为铁、铌、稀土共伴生矿,铁品位为30.70%,Re O、Nb2O5含量分别为5.43%和0.11%,主要有用矿物磁铁矿含量为37.46%,83.06%的铁以磁铁矿的形式存在;脉石矿物以碳酸盐、闪石、辉石及萤石为主,次为石英、长石及黑云母等。为充分...白云鄂博铁矿为铁、铌、稀土共伴生矿,铁品位为30.70%,Re O、Nb2O5含量分别为5.43%和0.11%,主要有用矿物磁铁矿含量为37.46%,83.06%的铁以磁铁矿的形式存在;脉石矿物以碳酸盐、闪石、辉石及萤石为主,次为石英、长石及黑云母等。为充分利用好矿石中铁矿物的自然禀赋,对矿石进行了超级铁精矿生产工艺研究。结果表明,矿石采用3个阶段磨矿—弱磁选工艺处理,一段磨矿细度为-0.074 mm占98.0%,弱磁粗选磁选强度为200 k A/m;二段磨矿细度为-0.038 mm占93.9%,弱磁精选1、弱磁精选2的磁选强度分别为90 k A/m和70 k A/m;三段磨矿细度为-0.030 mm占93.0%,弱磁精选3磁选强度为60 k A/m的情况下,最终获得铁品位为70.50%、铁回收率为67.58%、Si O2含量为0.35%的含微量Nb、RE的超级铁精矿,可作为制备直接还原铁的原料。展开更多
文摘基于第一性原理研究 M(M =Ti,V,Cr,Mn,Co和Ni)掺杂α-Fe(N)的结合能、电子结构及力学性能。计算结果表明,Ti和V优先占据晶胞的顶角位置,Cr和Mn优先占据晶胞的体心位置,Co和Ni与N不相邻时结构最稳定。Ti与V的掺杂加强了晶胞的稳定性,Cr, Mn与Ni的掺杂削弱了晶胞的稳定性,Co的掺杂不影响晶胞的稳定性。这些过渡金属在α-Fe晶胞中均存在金属键和离子键的共同作用,成键轨道主要来自 M 3d, Fe4s3p3d与N2p。与纯α-Fe体系相比,掺杂体系刚性均变强,经计算可得α-Fe(N)-V体系的弹性模量 E 、剪切模量 G 和体积模量 B 均为最大值,即掺杂V可显著提高材料的力学性能,V是最有效的固氮元素,与高氮钢冶炼的实验结果相吻合。
文摘白云鄂博铁矿为铁、铌、稀土共伴生矿,铁品位为30.70%,Re O、Nb2O5含量分别为5.43%和0.11%,主要有用矿物磁铁矿含量为37.46%,83.06%的铁以磁铁矿的形式存在;脉石矿物以碳酸盐、闪石、辉石及萤石为主,次为石英、长石及黑云母等。为充分利用好矿石中铁矿物的自然禀赋,对矿石进行了超级铁精矿生产工艺研究。结果表明,矿石采用3个阶段磨矿—弱磁选工艺处理,一段磨矿细度为-0.074 mm占98.0%,弱磁粗选磁选强度为200 k A/m;二段磨矿细度为-0.038 mm占93.9%,弱磁精选1、弱磁精选2的磁选强度分别为90 k A/m和70 k A/m;三段磨矿细度为-0.030 mm占93.0%,弱磁精选3磁选强度为60 k A/m的情况下,最终获得铁品位为70.50%、铁回收率为67.58%、Si O2含量为0.35%的含微量Nb、RE的超级铁精矿,可作为制备直接还原铁的原料。