针对露天矿生产场景中存在着目标像素低、小目标众多、背景复杂等问题,在YOLOv5s的基础上提出一种多尺度和超分辨率网络(multiscale and super-resolution network,MS_Net)。在特征融合模块,将PANet的三尺度检测升级为四尺度检测,提高...针对露天矿生产场景中存在着目标像素低、小目标众多、背景复杂等问题,在YOLOv5s的基础上提出一种多尺度和超分辨率网络(multiscale and super-resolution network,MS_Net)。在特征融合模块,将PANet的三尺度检测升级为四尺度检测,提高网络的多尺度学习能力,并使用子像素卷积作为上采样方法;提出一种多层融合(multi layer fusion,MLF)模块,融合了PANet 3个输出层的特征,得到一个具有丰富语义信息和空间信息的特征图;在预测层中,使用SIoU作为定位损失函数,优化模型的参数。实验结果表明:MS_Net网络在PASCALVOC数据集上mAP为79.4%,FPS为59;在矿山数据集上mAP为80.2%,FPS为64.5,模型可快速、准确、高效地对露天矿中的目标进行识别检测。展开更多