期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于NARX时间序列与BP神经网络的温室大棚不同采暖方式温度预测及节能性研究
1
作者 张伟 秦波 +8 位作者 戈小龙 黄存富 郭文强 李猛 邓晨 崔凤虎 谢小瓯 杨利冬 郭枭 《现代农业研究》 2025年第7期62-72,91,共12页
温度是调控温室大棚作物生长的核心环境参数,不同采暖方式形成的热动态具有很大差异,且传统静态预测模型难以满足复杂热环境的预测需求。本研究结合底角+侧墙暖板、空中悬挂裸膜、墙面装裸膜三种不同采暖方式测温点的温度数据,分别构建... 温度是调控温室大棚作物生长的核心环境参数,不同采暖方式形成的热动态具有很大差异,且传统静态预测模型难以满足复杂热环境的预测需求。本研究结合底角+侧墙暖板、空中悬挂裸膜、墙面装裸膜三种不同采暖方式测温点的温度数据,分别构建了不同采暖方式的传统BP、GA-BP及NARX时间序列神经网络温度预测模型,并结合模型的训练效果、预测精度以及不同采暖方式的节能性进行对比分析。结果表明:NARX神经网络模型训练收敛性与预测精度均显著优于BP和GA-BP模型;NARX神经网络模型中区域1(底角+侧墙暖板)模型预测效果最好,区域2(空中悬挂裸膜)次之,区域3(墙面装裸膜)预测效果欠佳;能耗评估表明,区域1采暖方式的能耗最低,单位面积温差能耗率仅为0.00789 kW・h/(m^(2)·℃·h),区域2次之,区域3能耗最高。本研究通过构建温室大棚内不同区域环境温度的精准预测模型,为温室大棚热环境调控提供了精细化管理依据。此外,通过节能性分析得到能耗较低的最优采暖方式(底角+侧墙暖板),在保障作物生长适宜温度的基础上提升了能源利用效率,为设施农业的精准化管理与可持续发展提供了理论指导。 展开更多
关键词 温室大棚 作物生长 温度 NARX时间序列神经网络 BP神经网络 GA-BP神经网络 节能性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部