期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CEEMDAN与VNWOA-LSSVM的供输弹系统早期故障诊断研究
被引量:
1
1
作者
景雪瑞
许昕
+3 位作者
潘宏侠
李磊磊
刘燕军
高俊峰
《机床与液压》
北大核心
2022年第8期193-197,共5页
由于供输弹系统早期故障信号成分复杂,故障特征微弱,故提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与以冯诺依曼拓扑结构(VN)改进鲸鱼算法(WOA)优化下的最小二乘支持向量机(LSSVM)的故障诊断方法。在对所测信号进行预处理即去趋...
由于供输弹系统早期故障信号成分复杂,故障特征微弱,故提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与以冯诺依曼拓扑结构(VN)改进鲸鱼算法(WOA)优化下的最小二乘支持向量机(LSSVM)的故障诊断方法。在对所测信号进行预处理即去趋势项和零点漂移后,通过CEEMDAN对供输弹信号进行分解,得出模态分量(IMF);然后依据相关系数和峭度准则这两个标准来选取符合标准的IMF分量,提取这些分量的分布熵(DE)作为特征;最后用VNWOA-LSSVM诊断模型,输入供输弹系统3种不同工况下的振动信号特征进行故障诊断,并且还对比了LSSVM、PSO-LSSVM、GA-LSSVM和WOA-LSSVM等方法对故障的识别率。实验结果表明:这些方法中经VNWOA优化后的LSSVM的识别率最高,高达94.03%。
展开更多
关键词
自适应噪声的完备经验模态分解
分布熵
鲸鱼算法
支持向量机
故障特征提取
在线阅读
下载PDF
职称材料
题名
基于CEEMDAN与VNWOA-LSSVM的供输弹系统早期故障诊断研究
被引量:
1
1
作者
景雪瑞
许昕
潘宏侠
李磊磊
刘燕军
高俊峰
机构
中北大学机械工程学院
中北大学系统辨识与诊断技术
研究
所
内蒙古北方重工集团研究院
内蒙古
一机
集团
科研所
出处
《机床与液压》
北大核心
2022年第8期193-197,共5页
基金
国家自然科学基金项目(51675491)。
文摘
由于供输弹系统早期故障信号成分复杂,故障特征微弱,故提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与以冯诺依曼拓扑结构(VN)改进鲸鱼算法(WOA)优化下的最小二乘支持向量机(LSSVM)的故障诊断方法。在对所测信号进行预处理即去趋势项和零点漂移后,通过CEEMDAN对供输弹信号进行分解,得出模态分量(IMF);然后依据相关系数和峭度准则这两个标准来选取符合标准的IMF分量,提取这些分量的分布熵(DE)作为特征;最后用VNWOA-LSSVM诊断模型,输入供输弹系统3种不同工况下的振动信号特征进行故障诊断,并且还对比了LSSVM、PSO-LSSVM、GA-LSSVM和WOA-LSSVM等方法对故障的识别率。实验结果表明:这些方法中经VNWOA优化后的LSSVM的识别率最高,高达94.03%。
关键词
自适应噪声的完备经验模态分解
分布熵
鲸鱼算法
支持向量机
故障特征提取
Keywords
Adaptive noise complete empirical mode decomposition(CEEMDAN)
Distribution entropy
Whale optimization algorithm
Support vector machine
Fault feature extraction
分类号
TH17 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CEEMDAN与VNWOA-LSSVM的供输弹系统早期故障诊断研究
景雪瑞
许昕
潘宏侠
李磊磊
刘燕军
高俊峰
《机床与液压》
北大核心
2022
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部