期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于改进的XGBoosting算法对婴幼儿奶粉中的脂肪含量的预测模型 被引量:1
1
作者 张文婧 薛河儒 +2 位作者 姜新华 刘江平 黄清 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第5期1464-1471,共8页
婴儿奶粉成分配比中,脂肪有着重要地位。脂肪不仅是婴儿生长发育中的重要成分,同时也为婴儿的生长提供必需的能量,对于婴儿脑发育及神经髓鞘的形成具有重要意义。化学的婴儿奶粉脂肪含量检测如乙醚提取法,方法检测灵敏,但存在破坏样本... 婴儿奶粉成分配比中,脂肪有着重要地位。脂肪不仅是婴儿生长发育中的重要成分,同时也为婴儿的生长提供必需的能量,对于婴儿脑发育及神经髓鞘的形成具有重要意义。化学的婴儿奶粉脂肪含量检测如乙醚提取法,方法检测灵敏,但存在破坏样本和检测周期较长的缺点,因此寻求一种为婴儿奶粉成分的无损检测方法,高光谱成像技术提供了一种可能的途径。以内蒙古地区不同阶段的婴儿奶粉为研究对象,采用多元散射校正(MSC)、标准正态变换(SNV)、平滑滤波算法(Savitzky-Golay)、鲁斯特算法(Roust)等对高光谱数据进行预处理,再利用竞争性自适应重加权算法(CARS)算法从125个特征波长中筛除光谱数据中冗余的波长保留有效波长66个。对极值梯度提升算法(XGBoosting)算法进行了贝叶斯优化(BO),最终构建了基于BO-XGBoosting对婴儿奶粉脂肪含量的预测模型。结果显示,该模型预测效果优于传统的偏最小二乘回归(PLSR)和支持向量回归(SVR)模型,且优于集成算法中Bagging、GrdientBoosting算法。贝叶斯优化极值梯度提升算法BO-XGBoosting模型在测试集实验,得到的决定系数(R^(2))和均方根误差(RMSEP)分别为0.9537和0.5773,比XGBoosting算法的R^(2)和RMSEP分别提高2.91%和降低19.2%。该研究为奶粉中脂肪含量的预测提供了基于BO-XGboosting集成算法的快速无损检测的算法支持和理论依据。 展开更多
关键词 高光谱 贝叶斯优化 XGBoosting模型 脂肪含量 无损检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部