期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于PLS-BPNN算法的土壤速效磷高光谱回归预测方法 被引量:18
1
作者 齐海军 李绍稳 +2 位作者 KARNIELI Arnon 金秀 王文才 《农业机械学报》 EI CAS CSCD 北大核心 2018年第2期166-172,共7页
土壤速效磷是影响作物生长发育的重要养分指标。光谱分析技术对速效磷的定量预测具有较好的应用前景,高光谱带宽窄、分辨率高,但存在数据冗余和共线性等问题。本文针对皖北砂姜黑土145个样本开展研究,提出了利用偏最小二乘回归算法(PLS... 土壤速效磷是影响作物生长发育的重要养分指标。光谱分析技术对速效磷的定量预测具有较好的应用前景,高光谱带宽窄、分辨率高,但存在数据冗余和共线性等问题。本文针对皖北砂姜黑土145个样本开展研究,提出了利用偏最小二乘回归算法(PLS-R)对土壤可见近红外高光谱数据(400~1 000 nm)进行数据降维和特征提取,根据交叉验证和变量投影重要性分别得到潜在变量和特征波长;再分别输入BP神经网络(BPNN)进行训练,得到回归分析模型对速效磷进行定量预测。结果表明:与利用全部波长数据建模的预测结果(校正集和验证集的相对分析误差M_(RPD)分别为10.27和2.09)相比,利用9个特征波长建立的回归模型校正集M_(RPD)为2.66,预测精度明显降低,而验证集M_(RPD)为2.05,近似达到利用全部波长数据建模的预测效果;利用5个潜在变量建立回归模型,校正集和验证集的M_(RPD)分别为3.10和2.29,其中验证集相对于全部波长建模的预测精度提高了9.6%。因此,基于PLS-BPNN算法进行回归建模可以有效降低高光谱数据冗余和共线性的影响,提高模型的泛化能力,且利用潜在变量进行回归建模能提高模型预测精度。 展开更多
关键词 土壤速效磷 光谱分析 回归算法 数据降维 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部