期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于RGE—UNet模型的甘蔗蔗梢识别研究
1
作者 沈中华 程虎强 +1 位作者 夏爱强 李涵 《中国农机化学报》 北大核心 2025年第3期188-194,共7页
传统的甘蔗蔗梢图像分割算法步骤烦琐、整体优化较为困难,采用在小样本上仍表现优异的UNet网络,将模型原有主干网络替换为ResNet50来简化模型训练过程,上采样部分用Ghost轻量级模块替换普通卷积模块以减少模型的参数量和浮点数计算量,... 传统的甘蔗蔗梢图像分割算法步骤烦琐、整体优化较为困难,采用在小样本上仍表现优异的UNet网络,将模型原有主干网络替换为ResNet50来简化模型训练过程,上采样部分用Ghost轻量级模块替换普通卷积模块以减少模型的参数量和浮点数计算量,同时在编码器和解码器之间加入SE注意力机制对提取到的特征权重进行优化,最终得到一个轻量级的RGE—UNet蔗梢分割模型。结合迁移学习的方法对模型进行训练,将训练完成的模型通过Canny算子与水平垂直投影法对蔗梢区域进行识别,并提取蔗梢分割路径坐标。结果表明,基于RGE—UNet模型识别方法的平均像素准确率为94.98%,单张图片分割时间为0.31 s,分割速度较UNet与R50—UNet模型分别提高13.9%和18.4%。该模型能实现对蔗梢的快速准确识别,为甘蔗收割的自动化研究提供一定的技术参考。 展开更多
关键词 甘蔗蔗梢 路径识别 语义分割 RGE—UNet 迁移学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部