人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先...人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先,构建基于ConvNext的局部特征编码骨干网络,并运用骨干网络编码局部特征的有效性来充分表征人脸局部特征之间的差异性;其次,提出上下文通道注意力(CC Attention)机制,通过动态自适应调整特征通道上的权重信息,表征深度特征的全局和局部特征,从而弥补骨干网络编码全局特征能力的不足;最后,设计不同分类策略,针对人脸属性估计(FAE)和面部表情识别(FER)任务,分别采用不同损失函数组合,以促使模型学习更多的面部细粒度特征。实验结果表明,所提FAER模型在人脸属性数据集CelebA(CelebFaces Attributes)上取得了91.87%的平均准确率,相较于次优模型SwinFace(Swin transformer for Face)高出0.55个百分点;在面部表情数据集RAF-DB和AffectNet上分别取得了91.75%和66.66%的准确率,相较于次优模型TransFER(Transformers for Facial Expression Recognition)分别高出0.84和0.43个百分点。展开更多
针对现有的类案检索(LCR)方法缺乏对案情要素的有效利用而容易被案例内容的语义结构相似性误导的问题,提出一种融合时序行为链与事件类型的类案检索方法。首先,采取序列标注的方法识别案情描述中的法律事件类型,并利用案例文本中的行为...针对现有的类案检索(LCR)方法缺乏对案情要素的有效利用而容易被案例内容的语义结构相似性误导的问题,提出一种融合时序行为链与事件类型的类案检索方法。首先,采取序列标注的方法识别案情描述中的法律事件类型,并利用案例文本中的行为要素构建时序行为链,以突出案情的关键要素,从而使模型聚焦于案例的核心内容,进而解决现有方法易被案例内容的语义结构相似性误导的问题;其次,利用分段编码构造时序行为链的相似性向量表征矩阵,从而增强案例间行为要素的语义交互;最后,通过聚合评分器,从时序行为链、法律事件类型、犯罪类型这3个角度衡量案例的相关性,从而增加案例匹配得分的合理性。实验结果表明,相较于SAILER(Structure-Aware pre-traIned language model for LEgal case Retrieval)方法,所提方法在LeCaRD(Legal Case Retrieval Dataset)上的P@5值提升了4个百分点、P@10值提升了3个百分点、MAP值提升了4个百分点,而NDCG@30值提升了0.8个百分点。可见,该方法能有效利用案情要素来避免案例内容的语义结构相似性的干扰,并能为类案检索提供可靠的依据。展开更多
文摘人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先,构建基于ConvNext的局部特征编码骨干网络,并运用骨干网络编码局部特征的有效性来充分表征人脸局部特征之间的差异性;其次,提出上下文通道注意力(CC Attention)机制,通过动态自适应调整特征通道上的权重信息,表征深度特征的全局和局部特征,从而弥补骨干网络编码全局特征能力的不足;最后,设计不同分类策略,针对人脸属性估计(FAE)和面部表情识别(FER)任务,分别采用不同损失函数组合,以促使模型学习更多的面部细粒度特征。实验结果表明,所提FAER模型在人脸属性数据集CelebA(CelebFaces Attributes)上取得了91.87%的平均准确率,相较于次优模型SwinFace(Swin transformer for Face)高出0.55个百分点;在面部表情数据集RAF-DB和AffectNet上分别取得了91.75%和66.66%的准确率,相较于次优模型TransFER(Transformers for Facial Expression Recognition)分别高出0.84和0.43个百分点。
文摘针对现有的类案检索(LCR)方法缺乏对案情要素的有效利用而容易被案例内容的语义结构相似性误导的问题,提出一种融合时序行为链与事件类型的类案检索方法。首先,采取序列标注的方法识别案情描述中的法律事件类型,并利用案例文本中的行为要素构建时序行为链,以突出案情的关键要素,从而使模型聚焦于案例的核心内容,进而解决现有方法易被案例内容的语义结构相似性误导的问题;其次,利用分段编码构造时序行为链的相似性向量表征矩阵,从而增强案例间行为要素的语义交互;最后,通过聚合评分器,从时序行为链、法律事件类型、犯罪类型这3个角度衡量案例的相关性,从而增加案例匹配得分的合理性。实验结果表明,相较于SAILER(Structure-Aware pre-traIned language model for LEgal case Retrieval)方法,所提方法在LeCaRD(Legal Case Retrieval Dataset)上的P@5值提升了4个百分点、P@10值提升了3个百分点、MAP值提升了4个百分点,而NDCG@30值提升了0.8个百分点。可见,该方法能有效利用案情要素来避免案例内容的语义结构相似性的干扰,并能为类案检索提供可靠的依据。