期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
联邦学习隐私模型发布综述
被引量:
6
1
作者
石聪聪
高先周
+1 位作者
黄秀丽
毛云龙
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2022年第2期127-136,共10页
联邦学习这一类分布式机器学习技术旨在保证使用大数据进行机器学习训练时保护本地数据不泄露.然而一系列机器学习隐私攻击表明,即使不直接暴露本地数据,仅仅通过获取机器学习模型的参数就可以进行数据隐私的窃取.从训练时参与者和聚合...
联邦学习这一类分布式机器学习技术旨在保证使用大数据进行机器学习训练时保护本地数据不泄露.然而一系列机器学习隐私攻击表明,即使不直接暴露本地数据,仅仅通过获取机器学习模型的参数就可以进行数据隐私的窃取.从训练时参与者和聚合端之间传递的中间模型到最后发布的聚合模型,联邦学习的模型发布过程存在诸多隐私威胁.由此出现了大量相关的保护技术,包括基于差分隐私以及基于密码学的联邦学习隐私保护技术.本文针对联邦学习本地模型和聚合模型发布过程中可能出现的各种隐私威胁和敌手模型进行了简要介绍,并且对相关的防御技术和研究成果进行系统性综述.同时也对相关技术在联邦学习隐私保护中的发展趋势进行了展望.
展开更多
关键词
联邦学习
隐私保护
差分隐私
在线阅读
下载PDF
职称材料
题名
联邦学习隐私模型发布综述
被引量:
6
1
作者
石聪聪
高先周
黄秀丽
毛云龙
机构
全球能源互联网研究院有限公司南京分公司/信息网络安全国网重点实验室
南京
大学计算机科学与技术系
出处
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2022年第2期127-136,共10页
基金
国家电网有限公司总部管理科技项目(5700-202190184A-0-0-00)。
文摘
联邦学习这一类分布式机器学习技术旨在保证使用大数据进行机器学习训练时保护本地数据不泄露.然而一系列机器学习隐私攻击表明,即使不直接暴露本地数据,仅仅通过获取机器学习模型的参数就可以进行数据隐私的窃取.从训练时参与者和聚合端之间传递的中间模型到最后发布的聚合模型,联邦学习的模型发布过程存在诸多隐私威胁.由此出现了大量相关的保护技术,包括基于差分隐私以及基于密码学的联邦学习隐私保护技术.本文针对联邦学习本地模型和聚合模型发布过程中可能出现的各种隐私威胁和敌手模型进行了简要介绍,并且对相关的防御技术和研究成果进行系统性综述.同时也对相关技术在联邦学习隐私保护中的发展趋势进行了展望.
关键词
联邦学习
隐私保护
差分隐私
Keywords
federated learning
privacy-preserving
differential privacy
分类号
TP309 [自动化与计算机技术—计算机系统结构]
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
联邦学习隐私模型发布综述
石聪聪
高先周
黄秀丽
毛云龙
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2022
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部