旋转机械设备变工况特点导致振动特征不稳定,给故障诊断带来很大困难这一问题。提出一种基于奇异值分解插值(Singular Value Decomposition Interpolation,SVDI)的变工况故障诊断方法,构建离散工况下的振动信号样本,通过奇异值分解将样...旋转机械设备变工况特点导致振动特征不稳定,给故障诊断带来很大困难这一问题。提出一种基于奇异值分解插值(Singular Value Decomposition Interpolation,SVDI)的变工况故障诊断方法,构建离散工况下的振动信号样本,通过奇异值分解将样本特征矩阵分解为奇异向量、旋转矩阵和特征均值,分别对奇异向量、旋转矩阵和特征均值进行插值,再重构实测工况下的特征矩阵,最后通过特征约简、模式识别方法进行故障诊断。该方法可在没有完备样本库的条件下估计出一定范围内任意工况的振动特征,能解决旋转机械设备变工况条件下的故障诊断难题。多种转速下的齿轮箱故障诊断实例证明了该方法的有效性。展开更多
文摘三维点云数据配准在机器人环境感知与建模、虚拟现实、人机交互、逆向工程等领域有着广阔的应用前景。针对传统迭代最近点(Iterative Closest Point,ICP)算法中存在的收敛速度慢、鲁棒性差等问题进行研究,提出了一种融合采样一致性和迭代最近点算法的点云配准方法,对点云数据的快速点特征直方图(Fast Point Features Histograms,FPFH)特征进行提取并对这些特征使用采样一致性初始配准算法(Sample Consensus Initial Alignment,SAC-IA)进而得到点云集间的对应关系,计算出点云的初始变换,从而获得一个较好的配准位置,提出了k-d树近邻搜索方法加速搜寻对应点对,并利用点云的方向向量阈值去除迭代最近点算法产生的误点对,实现点云的精确配准。实验结果表明,算法取得了较高的配准精度,加快了收敛速度。
文摘旋转机械设备变工况特点导致振动特征不稳定,给故障诊断带来很大困难这一问题。提出一种基于奇异值分解插值(Singular Value Decomposition Interpolation,SVDI)的变工况故障诊断方法,构建离散工况下的振动信号样本,通过奇异值分解将样本特征矩阵分解为奇异向量、旋转矩阵和特征均值,分别对奇异向量、旋转矩阵和特征均值进行插值,再重构实测工况下的特征矩阵,最后通过特征约简、模式识别方法进行故障诊断。该方法可在没有完备样本库的条件下估计出一定范围内任意工况的振动特征,能解决旋转机械设备变工况条件下的故障诊断难题。多种转速下的齿轮箱故障诊断实例证明了该方法的有效性。