录音设备的普及,使重录音成为一种去除音频信号中嵌入水印的普遍攻击方式。为抵抗重录音攻击提出一种新的用于溯源追踪的鲁棒音频水印算法,给出系数对数均值(Logarithmic Mean of Coefficient,LMC)的定义,分析系数对数均值的性质。提出...录音设备的普及,使重录音成为一种去除音频信号中嵌入水印的普遍攻击方式。为抵抗重录音攻击提出一种新的用于溯源追踪的鲁棒音频水印算法,给出系数对数均值(Logarithmic Mean of Coefficient,LMC)的定义,分析系数对数均值的性质。提出基于DCT的中频域水印嵌入方法。同步信息由帧号生成,和由版权生成的水印信息一起嵌入到载体信号中。仿真实验结果表明,提出的算法具有较好的不可听性、鲁棒性,同时能够有效抵抗一定程度的重录音攻击。展开更多
基于逻辑判别式(LD,Logistic Discrimination),提出一种叫做LDRC(LD based Rare-class Classification)方法用于提升LD在稀有类问题中的泛化性能.为了充分考虑稀有类的特性,构建了一种新目标函数RPM(Recall and Precision based M etri...基于逻辑判别式(LD,Logistic Discrimination),提出一种叫做LDRC(LD based Rare-class Classification)方法用于提升LD在稀有类问题中的泛化性能.为了充分考虑稀有类的特性,构建了一种新目标函数RPM(Recall and Precision based M etric),其同时考虑正类和负类的召回率以及正类的精度,其中正类和负类的召回率用于保障模型在评估指标召回率以及g-mean(正类和分类的召回率的几何平均数)上具有较高的泛化能力,正类的召回率和精度用于保障了模型具有较高的准确率以及fmeasure值(基于正类召回率与精度的指标).LDRC使用RPM作为目标函数监督参数学习过程,以保障LDRC具有较高的整体泛化能力.UCI数据集上的实验结果表明,与传统的逻辑判别、基于过采样和基于欠采样的逻辑判别相比,LDRC模型在评价指标召回率、g-mean和f-measure上都表现出明显优势.展开更多
文摘录音设备的普及,使重录音成为一种去除音频信号中嵌入水印的普遍攻击方式。为抵抗重录音攻击提出一种新的用于溯源追踪的鲁棒音频水印算法,给出系数对数均值(Logarithmic Mean of Coefficient,LMC)的定义,分析系数对数均值的性质。提出基于DCT的中频域水印嵌入方法。同步信息由帧号生成,和由版权生成的水印信息一起嵌入到载体信号中。仿真实验结果表明,提出的算法具有较好的不可听性、鲁棒性,同时能够有效抵抗一定程度的重录音攻击。
文摘基于逻辑判别式(LD,Logistic Discrimination),提出一种叫做LDRC(LD based Rare-class Classification)方法用于提升LD在稀有类问题中的泛化性能.为了充分考虑稀有类的特性,构建了一种新目标函数RPM(Recall and Precision based M etric),其同时考虑正类和负类的召回率以及正类的精度,其中正类和负类的召回率用于保障模型在评估指标召回率以及g-mean(正类和分类的召回率的几何平均数)上具有较高的泛化能力,正类的召回率和精度用于保障了模型具有较高的准确率以及fmeasure值(基于正类召回率与精度的指标).LDRC使用RPM作为目标函数监督参数学习过程,以保障LDRC具有较高的整体泛化能力.UCI数据集上的实验结果表明,与传统的逻辑判别、基于过采样和基于欠采样的逻辑判别相比,LDRC模型在评价指标召回率、g-mean和f-measure上都表现出明显优势.