利用深能级瞬态谱(DLTS)研究了气源分子束外延(GSMBE)生长的InP1-xBix材料中深能级中心的性质。在未有意掺杂的InP中测量到一个多数载流子深能级中心E1,E1的能级位置为Ec-0.38 e V,俘获截面为1.87×10^(-15)cm^2。在未有意掺杂的InP...利用深能级瞬态谱(DLTS)研究了气源分子束外延(GSMBE)生长的InP1-xBix材料中深能级中心的性质。在未有意掺杂的InP中测量到一个多数载流子深能级中心E1,E1的能级位置为Ec-0.38 e V,俘获截面为1.87×10^(-15)cm^2。在未有意掺杂的InP0.9751Bi0.0249中测量到一个少数载流子深能级中心H1,H1的能级位置为Ev+0.31 eV,俘获截面为2.87×10^(-17)cm^2。深中心E1应该起源于本征反位缺陷PIn,深中心H1可能来源于形成的Bi原子对或者更复杂的与Bi相关的团簇。明确这些缺陷的起源对于InPBi材料在器件应用方面具有重要的意义。展开更多
从理论与实验两方面对截止波长为1.7μm(x=0.53),1.9μm(x=0.6)和2.2μm(x=0.7)p in InxGa1-xAs探测器性能进行了研究.对探测器暗电流的研究结果表明,扩展波长In0.6Ga0.4As,In0.7Ga0.3As探测器在反向偏置低压区,欧姆电流占据主导地位;...从理论与实验两方面对截止波长为1.7μm(x=0.53),1.9μm(x=0.6)和2.2μm(x=0.7)p in InxGa1-xAs探测器性能进行了研究.对探测器暗电流的研究结果表明,扩展波长In0.6Ga0.4As,In0.7Ga0.3As探测器在反向偏置低压区,欧姆电流占据主导地位;在反向偏置高压区,缺陷隧穿电流占主导地位;且扩展波长In0.6Ga0.4As,In0.7Ga0.3As探测器的暗电流比In0.53Ga0.47As探测器增加较大.对探测器R0A随温度及i层载流子浓度变化关系的研究结果表明,在热电制冷温度下探测器性能可得到较大提高,i层的轻掺杂可使探测器的R0A得到改善.展开更多
基金Natural Science Foundation of Shanghai(10ZR1436300)Innovative Foundation of Shanghai Institute of Microsystem and Information TechnologyFoundation of Key Laboratory of Infrared Imaging Materials and Detectors CAS
文摘利用深能级瞬态谱(DLTS)研究了气源分子束外延(GSMBE)生长的InP1-xBix材料中深能级中心的性质。在未有意掺杂的InP中测量到一个多数载流子深能级中心E1,E1的能级位置为Ec-0.38 e V,俘获截面为1.87×10^(-15)cm^2。在未有意掺杂的InP0.9751Bi0.0249中测量到一个少数载流子深能级中心H1,H1的能级位置为Ev+0.31 eV,俘获截面为2.87×10^(-17)cm^2。深中心E1应该起源于本征反位缺陷PIn,深中心H1可能来源于形成的Bi原子对或者更复杂的与Bi相关的团簇。明确这些缺陷的起源对于InPBi材料在器件应用方面具有重要的意义。
文摘从理论与实验两方面对截止波长为1.7μm(x=0.53),1.9μm(x=0.6)和2.2μm(x=0.7)p in InxGa1-xAs探测器性能进行了研究.对探测器暗电流的研究结果表明,扩展波长In0.6Ga0.4As,In0.7Ga0.3As探测器在反向偏置低压区,欧姆电流占据主导地位;在反向偏置高压区,缺陷隧穿电流占主导地位;且扩展波长In0.6Ga0.4As,In0.7Ga0.3As探测器的暗电流比In0.53Ga0.47As探测器增加较大.对探测器R0A随温度及i层载流子浓度变化关系的研究结果表明,在热电制冷温度下探测器性能可得到较大提高,i层的轻掺杂可使探测器的R0A得到改善.