针对IEEE 802.11p标准中导频数量有限,难以准确追踪车联万物(Vehicle-to-Everything,V2X)通信中时变信道的问题,学者们研究了数据导频辅助(Data Pilot Aided,DPA)信道估计方案。然而,这些经典DPA方案不能在完整的信噪比(Signal to Noise...针对IEEE 802.11p标准中导频数量有限,难以准确追踪车联万物(Vehicle-to-Everything,V2X)通信中时变信道的问题,学者们研究了数据导频辅助(Data Pilot Aided,DPA)信道估计方案。然而,这些经典DPA方案不能在完整的信噪比(Signal to Noise Ratio,SNR)范围内给出令人满意的效果,并且其估计结果的可靠性易受误差传播的影响。研究了一种新的信道估计方案,基于使用虚拟子载波的最小均方误差(Minimum Mean Square Error Using Virtual Pilots,MMSE-VP)方案,提出一种带有时间平均操作的改进MMSE(Improved MMSE,IMMSE)方案。IMMSE方案通过利用相邻正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号间信道的相关性来提高MMSE-VP方案在低SNR区域的性能,达到在整个SNR区域有良好表现的目的。联合深度学习技术,采用全连接神经网络(Fully Connected Neural Network,FCNN)作为IMMSE方案的非线性后处理模块,减少误差并获得更好的估计性能。在不同实验条件下的仿真结果表明,提出的信道估计方案可以适应调制方式和车辆速度的变化,能有效应对V2X通信中的信道估计问题。展开更多
在深度学习领域中,注意力机制因其出色的性能以及即插即用的便捷性,在图像处理任务中得到了广泛应用。介绍了通道注意力机制、空间注意力机制以及通道与空间混合注意力机制这3类主流注意力机制的核心思想和实现方法。通过对比分析它们...在深度学习领域中,注意力机制因其出色的性能以及即插即用的便捷性,在图像处理任务中得到了广泛应用。介绍了通道注意力机制、空间注意力机制以及通道与空间混合注意力机制这3类主流注意力机制的核心思想和实现方法。通过对比分析它们之间的优势与缺陷,探讨了注意力机制所存在的挑战与问题,给出了采用VGGNet(Visual Geometry Group Network)模型对注意力机制在图像分类任务中的性能评测结果。最后,展望了注意力机制未来的发展趋势,以期为后续研究提供有价值的参考与启示。展开更多
光伏发电在能源领域中具有重要地位。为了准确量化光伏发电功率的不确定性和波动范围,并提高区间预测的综合性能,提出了一种基于特征挖掘与改进TCN-BiGRU的光伏功率区间概率预测方法。首先,利用最大信息系数和符号传递熵因果分析,对气...光伏发电在能源领域中具有重要地位。为了准确量化光伏发电功率的不确定性和波动范围,并提高区间预测的综合性能,提出了一种基于特征挖掘与改进TCN-BiGRU的光伏功率区间概率预测方法。首先,利用最大信息系数和符号传递熵因果分析,对气象特征进行筛选,剔除冗余信息,并构造全球水平辐射趋势特征、季节性特征和天气聚类特征以提供更多有效信息。随后,结合时间模式注意力机制和分位数回归方法对TCN-BiGRU模型进行改进,构建组合模型进行区间预测。最后,采用散度度量半极差优化经验带宽选择的核密度估计(kernel density estimation,KDE)方法生成概率预测结果。通过真实光伏电站数据进行分析,验证了所提方法在光伏功率区间概率预测中具有较高的可靠性和适用性。展开更多
文摘针对IEEE 802.11p标准中导频数量有限,难以准确追踪车联万物(Vehicle-to-Everything,V2X)通信中时变信道的问题,学者们研究了数据导频辅助(Data Pilot Aided,DPA)信道估计方案。然而,这些经典DPA方案不能在完整的信噪比(Signal to Noise Ratio,SNR)范围内给出令人满意的效果,并且其估计结果的可靠性易受误差传播的影响。研究了一种新的信道估计方案,基于使用虚拟子载波的最小均方误差(Minimum Mean Square Error Using Virtual Pilots,MMSE-VP)方案,提出一种带有时间平均操作的改进MMSE(Improved MMSE,IMMSE)方案。IMMSE方案通过利用相邻正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号间信道的相关性来提高MMSE-VP方案在低SNR区域的性能,达到在整个SNR区域有良好表现的目的。联合深度学习技术,采用全连接神经网络(Fully Connected Neural Network,FCNN)作为IMMSE方案的非线性后处理模块,减少误差并获得更好的估计性能。在不同实验条件下的仿真结果表明,提出的信道估计方案可以适应调制方式和车辆速度的变化,能有效应对V2X通信中的信道估计问题。
文摘在深度学习领域中,注意力机制因其出色的性能以及即插即用的便捷性,在图像处理任务中得到了广泛应用。介绍了通道注意力机制、空间注意力机制以及通道与空间混合注意力机制这3类主流注意力机制的核心思想和实现方法。通过对比分析它们之间的优势与缺陷,探讨了注意力机制所存在的挑战与问题,给出了采用VGGNet(Visual Geometry Group Network)模型对注意力机制在图像分类任务中的性能评测结果。最后,展望了注意力机制未来的发展趋势,以期为后续研究提供有价值的参考与启示。
文摘光伏发电在能源领域中具有重要地位。为了准确量化光伏发电功率的不确定性和波动范围,并提高区间预测的综合性能,提出了一种基于特征挖掘与改进TCN-BiGRU的光伏功率区间概率预测方法。首先,利用最大信息系数和符号传递熵因果分析,对气象特征进行筛选,剔除冗余信息,并构造全球水平辐射趋势特征、季节性特征和天气聚类特征以提供更多有效信息。随后,结合时间模式注意力机制和分位数回归方法对TCN-BiGRU模型进行改进,构建组合模型进行区间预测。最后,采用散度度量半极差优化经验带宽选择的核密度估计(kernel density estimation,KDE)方法生成概率预测结果。通过真实光伏电站数据进行分析,验证了所提方法在光伏功率区间概率预测中具有较高的可靠性和适用性。