期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自动量化的肿瘤-间质比预测胃癌新辅助化疗疗效
1
作者 仇文涛 李振辉 +4 位作者 焦一平 王向学 张深燕 吴琳 徐军 《中国肿瘤临床》 CAS CSCD 北大核心 2023年第23期1203-1210,共8页
目的:探讨通过深度学习的方法来全自动定量评估术前活检标本的肿瘤-间质比(tumor-stroma ratio,TSR)是否可以预测胃癌患者新辅助化疗(neoadjuvant chemotherapy,NAC)疗效。方法:选取2013年3月至2020年3月在云南省肿瘤医院接受NAC治疗的... 目的:探讨通过深度学习的方法来全自动定量评估术前活检标本的肿瘤-间质比(tumor-stroma ratio,TSR)是否可以预测胃癌患者新辅助化疗(neoadjuvant chemotherapy,NAC)疗效。方法:选取2013年3月至2020年3月在云南省肿瘤医院接受NAC治疗的胃癌患者的术前活检切片148张和手术切除切片43张。构建肿瘤区域分割模型和上皮-间质分割模型,使用手术切除切片训练和评估模型,在活检切片上预测,取二者预测结果的交集,根据TSR的定义得到TSR值。根据术后病理学肿瘤退缩分级(tumor regression grade,TRG)将所有患者分为反应良好者(TRG 0~1)和反应不良者(TRG 2~3)。采用单因素和多因素回归分析TSR与胃癌新辅助化疗疗效的相关性。结果:肿瘤组织分割模型的IOU(intersection over union)为0.94,上皮-间质分割模型的IOU为0.88。以44.93%和70.22%作为TSR的临界值,将患者分为低、中、高间质比组,三组之间反应良好者比例具有显著性差异(P<0.05)。多因素分析显示,TSR是治疗前对胃癌NAC反应的独立预测因子(OR=0.10,95%CI:0.03~0.32)。使用常规临床信息预测治疗响应的基础上,加入TSR三分类等级作为治疗响应的预测变量时,曲线下面积(area under curve,AUC)可从0.71提升至0.85。结论:该模型能够在病理切片上自动分割肿瘤区域、上皮区域和间质区域,并能够自动、准确的计算出TSR,同时发现基于此方法自动计算的TSR可以预测NAC疗效。 展开更多
关键词 肿瘤-间质比 新辅助化疗 语义分割 肿瘤微环境 病理缓解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部