期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
自动量化的肿瘤-间质比预测胃癌新辅助化疗疗效
1
作者
仇文涛
李振辉
+4 位作者
焦一平
王向学
张深燕
吴琳
徐军
《中国肿瘤临床》
CAS
CSCD
北大核心
2023年第23期1203-1210,共8页
目的:探讨通过深度学习的方法来全自动定量评估术前活检标本的肿瘤-间质比(tumor-stroma ratio,TSR)是否可以预测胃癌患者新辅助化疗(neoadjuvant chemotherapy,NAC)疗效。方法:选取2013年3月至2020年3月在云南省肿瘤医院接受NAC治疗的...
目的:探讨通过深度学习的方法来全自动定量评估术前活检标本的肿瘤-间质比(tumor-stroma ratio,TSR)是否可以预测胃癌患者新辅助化疗(neoadjuvant chemotherapy,NAC)疗效。方法:选取2013年3月至2020年3月在云南省肿瘤医院接受NAC治疗的胃癌患者的术前活检切片148张和手术切除切片43张。构建肿瘤区域分割模型和上皮-间质分割模型,使用手术切除切片训练和评估模型,在活检切片上预测,取二者预测结果的交集,根据TSR的定义得到TSR值。根据术后病理学肿瘤退缩分级(tumor regression grade,TRG)将所有患者分为反应良好者(TRG 0~1)和反应不良者(TRG 2~3)。采用单因素和多因素回归分析TSR与胃癌新辅助化疗疗效的相关性。结果:肿瘤组织分割模型的IOU(intersection over union)为0.94,上皮-间质分割模型的IOU为0.88。以44.93%和70.22%作为TSR的临界值,将患者分为低、中、高间质比组,三组之间反应良好者比例具有显著性差异(P<0.05)。多因素分析显示,TSR是治疗前对胃癌NAC反应的独立预测因子(OR=0.10,95%CI:0.03~0.32)。使用常规临床信息预测治疗响应的基础上,加入TSR三分类等级作为治疗响应的预测变量时,曲线下面积(area under curve,AUC)可从0.71提升至0.85。结论:该模型能够在病理切片上自动分割肿瘤区域、上皮区域和间质区域,并能够自动、准确的计算出TSR,同时发现基于此方法自动计算的TSR可以预测NAC疗效。
展开更多
关键词
肿瘤-间质比
新辅助化疗
语义分割
肿瘤微环境
病理缓解
在线阅读
下载PDF
职称材料
题名
自动量化的肿瘤-间质比预测胃癌新辅助化疗疗效
1
作者
仇文涛
李振辉
焦一平
王向学
张深燕
吴琳
徐军
机构
南京信息工程大学人工智能学院智慧医疗研究院
云南省肿瘤医院影像科
中山大学附属第六
医院
病理
科
云南省
肿瘤
医院
病理
科
出处
《中国肿瘤临床》
CAS
CSCD
北大核心
2023年第23期1203-1210,共8页
基金
国家自然科学基金项目(编号:82360345,82001986)资助。
文摘
目的:探讨通过深度学习的方法来全自动定量评估术前活检标本的肿瘤-间质比(tumor-stroma ratio,TSR)是否可以预测胃癌患者新辅助化疗(neoadjuvant chemotherapy,NAC)疗效。方法:选取2013年3月至2020年3月在云南省肿瘤医院接受NAC治疗的胃癌患者的术前活检切片148张和手术切除切片43张。构建肿瘤区域分割模型和上皮-间质分割模型,使用手术切除切片训练和评估模型,在活检切片上预测,取二者预测结果的交集,根据TSR的定义得到TSR值。根据术后病理学肿瘤退缩分级(tumor regression grade,TRG)将所有患者分为反应良好者(TRG 0~1)和反应不良者(TRG 2~3)。采用单因素和多因素回归分析TSR与胃癌新辅助化疗疗效的相关性。结果:肿瘤组织分割模型的IOU(intersection over union)为0.94,上皮-间质分割模型的IOU为0.88。以44.93%和70.22%作为TSR的临界值,将患者分为低、中、高间质比组,三组之间反应良好者比例具有显著性差异(P<0.05)。多因素分析显示,TSR是治疗前对胃癌NAC反应的独立预测因子(OR=0.10,95%CI:0.03~0.32)。使用常规临床信息预测治疗响应的基础上,加入TSR三分类等级作为治疗响应的预测变量时,曲线下面积(area under curve,AUC)可从0.71提升至0.85。结论:该模型能够在病理切片上自动分割肿瘤区域、上皮区域和间质区域,并能够自动、准确的计算出TSR,同时发现基于此方法自动计算的TSR可以预测NAC疗效。
关键词
肿瘤-间质比
新辅助化疗
语义分割
肿瘤微环境
病理缓解
Keywords
tumor-stroma ratio(TSR)
neoadjuvant chemotherapy(NAC)
semantic segmentation
tumor microenvironment
pathological remission
分类号
R735.2 [医药卫生—肿瘤]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
自动量化的肿瘤-间质比预测胃癌新辅助化疗疗效
仇文涛
李振辉
焦一平
王向学
张深燕
吴琳
徐军
《中国肿瘤临床》
CAS
CSCD
北大核心
2023
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部