电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先...电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。展开更多
非侵入式负荷监测(non-intrusive load monitoring,NILM)技术对于实现智慧用电与管理具有重要意义。针对现有的非侵入式负荷监测方法在高噪声环境下对特征相似电器以及微小负荷变化监测精度不足的难题,提出了一种基于单位力操作视觉变...非侵入式负荷监测(non-intrusive load monitoring,NILM)技术对于实现智慧用电与管理具有重要意义。针对现有的非侵入式负荷监测方法在高噪声环境下对特征相似电器以及微小负荷变化监测精度不足的难题,提出了一种基于单位力操作视觉变换器的非侵入式负荷监测(non-intrusive load monitoring based on unit force operated vision transformer,UFONILM)模型的非侵入式负荷监测的深度学习框架。UFONILM模型的单位力操作(unit force operated,UFO)模块通过层归一化和一系列卷积层有效地提取和利用了多尺度的时间序列数据,特征。在标准的UK-DALE数据集上进行的实验显示,UFONILM模型在准确性和F1得分上均优于现有方法,特别是在细粒度的负荷监测场景中。研制了基于UFONILM模型的嵌入式系统,实现了边缘计算的非侵入式负荷监测,可实时监测和响应电网中的异常用电行为,如违规充电事件。实验检测证明,UFONILM模型嵌入式非侵入式负荷监测方法在监测效率方面具有显著的提升,具有高效、便捷安装、可扩展等特点。展开更多
精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测...精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。展开更多
文摘电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。
文摘非侵入式负荷监测(non-intrusive load monitoring,NILM)技术对于实现智慧用电与管理具有重要意义。针对现有的非侵入式负荷监测方法在高噪声环境下对特征相似电器以及微小负荷变化监测精度不足的难题,提出了一种基于单位力操作视觉变换器的非侵入式负荷监测(non-intrusive load monitoring based on unit force operated vision transformer,UFONILM)模型的非侵入式负荷监测的深度学习框架。UFONILM模型的单位力操作(unit force operated,UFO)模块通过层归一化和一系列卷积层有效地提取和利用了多尺度的时间序列数据,特征。在标准的UK-DALE数据集上进行的实验显示,UFONILM模型在准确性和F1得分上均优于现有方法,特别是在细粒度的负荷监测场景中。研制了基于UFONILM模型的嵌入式系统,实现了边缘计算的非侵入式负荷监测,可实时监测和响应电网中的异常用电行为,如违规充电事件。实验检测证明,UFONILM模型嵌入式非侵入式负荷监测方法在监测效率方面具有显著的提升,具有高效、便捷安装、可扩展等特点。
文摘精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。