期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多粒度字形增强的中文医学命名实体识别 被引量:4
1
作者 刘威 马磊 +1 位作者 李凯 李蓉 《计算机工程》 CAS CSCD 北大核心 2024年第2期337-344,共8页
中文医学命名实体识别(CMNER)旨在从中文非结构化医学文本中提取实体。现有的基于字符的CMNER模型没有从不同角度全面考虑汉字的特点,限制了其应用于CMNER的性能。基于此,提出基于多粒度字形增强的中文医学命名实体识别模型。对于输入... 中文医学命名实体识别(CMNER)旨在从中文非结构化医学文本中提取实体。现有的基于字符的CMNER模型没有从不同角度全面考虑汉字的特点,限制了其应用于CMNER的性能。基于此,提出基于多粒度字形增强的中文医学命名实体识别模型。对于输入的句子,结合汉字的字形空间结构和偏旁部首的表示,同时根据相应的领域词典来匹配字符的领域词信息,增强字符的语义和潜在边界信息,使模型获得更好的实体识别能力;通过门控机制整合领域词和汉字的字形多粒度特征,综合考虑汉字的领域信息和汉字底层信息,从而具有更好的感知医学实体的能力。在此基础上,将多粒度字形增强的字符表示输入到双向长短记忆和条件随机场层,分别进行上下文编码和标签解码。实验结果表明,本文模型较于最佳基线模型在IMCS21和CMeEE数据集上的F1值分别提升了1.04%和0.62%。此外,通过消融实验验证了该模型的每个组成部分的有效性,在识别中文医学命名实体时具有较好的识别性能。 展开更多
关键词 命名实体识别 医学领域 字形结构 门控机制 领域词典
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部