以云南省天星站和坡脚站10、20、40 cm 3个土层的土壤含水量观测数据为基础,通过改进时变滤波经验模态分解(TVFEMD)和快速学习网(FLN)方法构建基于多种优化算法的预测模型(TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN),提升土壤含水量时间序列预...以云南省天星站和坡脚站10、20、40 cm 3个土层的土壤含水量观测数据为基础,通过改进时变滤波经验模态分解(TVFEMD)和快速学习网(FLN)方法构建基于多种优化算法的预测模型(TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN),提升土壤含水量时间序列预测精度。通过比较各优化算法的模型性能,为土壤水分预测提供更优的建模方法。结果表明,TVFEMD分解效果主要受带宽阈值和B样条阶数2个关键参数影响。采用IVYA算法优化这2个参数可提升时间序列分解质量,进而改善模型预测性能。TVFEMD-BLSO/AO/IVYA/EGO-FLN模型在训练集上表现出卓越的预测性能,其平均绝对百分比误差(MAPE)为0.002%~0.077%,决定系数(R^(2))为0.9997~1.0000;预测集中的MAPE为0.006%~0.459%,R^(2)为0.9966~1.0000。与TVFEMD-PSO-FLN模型相比,TVFEMD-BLSO/AO/IVYA/EGO-FLN模型在拟合性能和预测精度方面均有明显提升。采用BLSO、AO、IVYA和EGO算法优化FLN超参数可有效提升模型性能,其中IVYA算法的优化效果较突出。展开更多
文摘以云南省天星站和坡脚站10、20、40 cm 3个土层的土壤含水量观测数据为基础,通过改进时变滤波经验模态分解(TVFEMD)和快速学习网(FLN)方法构建基于多种优化算法的预测模型(TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN),提升土壤含水量时间序列预测精度。通过比较各优化算法的模型性能,为土壤水分预测提供更优的建模方法。结果表明,TVFEMD分解效果主要受带宽阈值和B样条阶数2个关键参数影响。采用IVYA算法优化这2个参数可提升时间序列分解质量,进而改善模型预测性能。TVFEMD-BLSO/AO/IVYA/EGO-FLN模型在训练集上表现出卓越的预测性能,其平均绝对百分比误差(MAPE)为0.002%~0.077%,决定系数(R^(2))为0.9997~1.0000;预测集中的MAPE为0.006%~0.459%,R^(2)为0.9966~1.0000。与TVFEMD-PSO-FLN模型相比,TVFEMD-BLSO/AO/IVYA/EGO-FLN模型在拟合性能和预测精度方面均有明显提升。采用BLSO、AO、IVYA和EGO算法优化FLN超参数可有效提升模型性能,其中IVYA算法的优化效果较突出。