期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
车载网中一种基于区块链的隐私保护数据聚合系统 被引量:1
1
作者 杨睿成 董国芳 徐正楠 《信息安全研究》 北大核心 2025年第4期367-376,共10页
针对车载网中数据聚合面临的隐私风险及挑战,提出了一种安全的车载网中基于区块链的安全匿名数据聚合方案.方案将云计算与区块链相融合,设计了一种基于区块链的隐私保护数据聚合系统,可以帮助车载网实现高效且安全的数据收集和数据分析... 针对车载网中数据聚合面临的隐私风险及挑战,提出了一种安全的车载网中基于区块链的安全匿名数据聚合方案.方案将云计算与区块链相融合,设计了一种基于区块链的隐私保护数据聚合系统,可以帮助车载网实现高效且安全的数据收集和数据分析任务.方案中利用密钥托管弹性保证了系统中密钥的安全性,防止以往密钥由第三方独自生成所导致的安全问题;通过2次数据聚合实现了细粒度的数据聚合,为车载网的云服务提供了有效支持.通过安全性分析和性能评估验证了该方案的安全性,并证明了该方案具有更高的计算效率和通信效率. 展开更多
关键词 车载网 数据聚合 区块链 密钥托管弹性 匿名
在线阅读 下载PDF
基于YOLOv9的交通路口图像的多目标检测算法
2
作者 廖炎华 鄢元霞 潘文林 《计算机应用》 北大核心 2025年第8期2555-2565,共11页
针对交通路口图像复杂,小目标难测且目标之间易遮挡以及天气和光照变化引发的颜色失真、噪声和模糊等问题,提出一种基于YOLOv9(You Only Look Once version 9)的交通路口图像的多目标检测算法ITD-YOLOv9(Intersection Target Detection-... 针对交通路口图像复杂,小目标难测且目标之间易遮挡以及天气和光照变化引发的颜色失真、噪声和模糊等问题,提出一种基于YOLOv9(You Only Look Once version 9)的交通路口图像的多目标检测算法ITD-YOLOv9(Intersection Target Detection-YOLOv9)。首先,设计CoT-CAFRNet(Chain-of-Thought prompted Content-Aware Feature Reassembly Network)图像增强网络,以提升图像质量,并优化输入特征;其次,加入通道自适应特征融合(iCAFF)模块,以增强小目标及重叠遮挡目标的提取能力;再次,提出特征融合金字塔结构BiHS-FPN(Bi-directional High-level Screening Feature Pyramid Network),以增强多尺度特征的融合能力;最后,设计IF-MPDIoU(Inner-Focaler-Minimum Point Distance based Intersection over Union)损失函数,以通过调整变量因子,聚焦关键样本,并增强泛化能力。实验结果表明,在自制数据集和SODA10M数据集上,ITD-YOLOv9算法的检测精度分别为83.8%和56.3%,检测帧率分别为64.8 frame/s和57.4 frame/s。与YOLOv9算法相比,ITD-YOLOv9算法的检测精度分别提升了3.9和2.7个百分点。可见,所提算法有效实现了交通路口的多目标检测。 展开更多
关键词 YOLOv9 交通路口检测 自适应融合 多目标检测 深度学习
在线阅读 下载PDF
深度度量学习综述 被引量:1
3
作者 柴汶泽 范菁 +2 位作者 孙书魁 梁一鸣 刘竟锋 《计算机应用》 CSCD 北大核心 2024年第10期2995-3010,共16页
随着深度神经网络的兴起,深度度量学习(DML)引起广泛的关注。为了深入了解深度度量学习,首先,整理和分析传统度量学习方法的局限性。其次,从3个类型探讨DML,包括基于样本对、代理和分类的类型:基于样本对的类型包括散度方法、排序方法... 随着深度神经网络的兴起,深度度量学习(DML)引起广泛的关注。为了深入了解深度度量学习,首先,整理和分析传统度量学习方法的局限性。其次,从3个类型探讨DML,包括基于样本对、代理和分类的类型:基于样本对的类型包括散度方法、排序方法和基于生成对抗网络(GAN)的方法;基于代理的类型主要从代理样本、类别方面进行讨论;基于分类的类型中主要讨论了跨模态度量学习、类内类间边距问题、超图分类,以及与其他方法(如基于强化学习和基于对抗学习的方法)的结合。再次,介绍评估DML性能的各种指标,同时总结和对比DML在不同任务(包括人脸识别、图像检索和行人重识别等)中的应用。最后,探讨DML面临的挑战,并提出一些可能的解决策略。 展开更多
关键词 深度神经网络 深度度量学习 机器学习 计算机视觉 人工智能
在线阅读 下载PDF
基于双向交叉注意力的多尺度特征融合情感分类
4
作者 梁一鸣 范菁 柴汶泽 《计算机应用》 2025年第9期2773-2782,共10页
针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机... 针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机制的情感分类模型M-BCA(Multi-scale BERT features with Bidirectional Cross Attention)。首先,从BERT的低层、中层和高层分别提取多尺度特征,以捕捉句子文本的表面信息、语法信息和深层语义信息;其次,利用三通道门控循环单元(GRU)进一步提取深层语义特征,从而增强模型对文本的理解能力;最后,为促进不同尺度特征之间的交互与学习,引入双向交叉注意力机制,从而增强多尺度特征之间的相互作用。此外,针对不平衡数据问题,设计数据增强策略,并采用混合损失函数优化模型对少数类别样本的学习。实验结果表明,在细粒度情感分类任务中,M-BCA表现优异。M-BCA在处理分布不平衡的多分类情感数据集时,它的性能显著优于大多数基线模型。此外,M-BCA在少数类别样本的分类任务中表现突出,尤其是在NLPCC 2014与Online_Shopping_10_Cats数据集上,MBCA的少数类别的Macro-Recall领先其他所有对比模型。可见,该模型在细粒度情感分类任务中取得了显能提升,并适用于处理不平衡数据集。 展开更多
关键词 BERT 细粒度情感分类 多尺度特征融合 数据增强 混合损失函数 双向交叉注意力
在线阅读 下载PDF
联邦学习统计异质性综述
5
作者 俞浩 范菁 +2 位作者 孙伊航 董华 郗恩康 《计算机应用》 2025年第9期2737-2746,共10页
联邦学习是一种强调隐私保护的分布式机器学习框架。然而,它在应对统计异质性问题时面临显著挑战。统计异质性源于参与节点间的数据分布差异,可能导致模型更新偏差、全局模型性能下降以及收敛不稳定等问题。针对上述问题,首先,详细分析... 联邦学习是一种强调隐私保护的分布式机器学习框架。然而,它在应对统计异质性问题时面临显著挑战。统计异质性源于参与节点间的数据分布差异,可能导致模型更新偏差、全局模型性能下降以及收敛不稳定等问题。针对上述问题,首先,详细分析统计异质性带来的主要问题,包括特征分布不一致、标签分布不均衡、数据量不对称以及数据质量参差不齐等;其次,对现有的联邦学习统计异质性解决方案进行系统综述,包括局部校正、聚类方法、客户端选择优化、聚合策略调整、数据共享、知识蒸馏以及解耦优化等,并逐一评估它们的优缺点与适用场景;最后,探讨了未来的相关研究方向,如设备计算能力感知、模型异构适应、隐私安全机制的优化以及跨任务迁移能力的提升,为应对实际应用中的统计异质性提供参考。 展开更多
关键词 联邦学习 统计异质性 客户端漂移 分布式学习 非独立同分布
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部