期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
云南省大坝白蚁危害分析与分级预防体系建立
1
作者 陈德辉 王子轩 +1 位作者 吴曹东 欧斌 《人民长江》 北大核心 2025年第1期205-211,共7页
为了构建云南省大坝白蚁危害分级预防体系,以实现对大坝白蚁危害的精准防治,采用Ⅲ类危害归一化算法优化白蚁危害处数的统计方式,提出了大坝原始白蚁危害密度的评价方法,选取影响白蚁危害的6项因子,并运用熵权-TOPSIS方法确定了影响因... 为了构建云南省大坝白蚁危害分级预防体系,以实现对大坝白蚁危害的精准防治,采用Ⅲ类危害归一化算法优化白蚁危害处数的统计方式,提出了大坝原始白蚁危害密度的评价方法,选取影响白蚁危害的6项因子,并运用熵权-TOPSIS方法确定了影响因子权重及其对白蚁危害的综合评分。结果表明:云南省大坝白蚁危害呈现南部及西南部较严重,西北部与东北部较轻微的分布态势,综合评分与原始白蚁危害密度呈现高度一致性,验证了评分结果的可靠性。基于此,按不同分值区间建立了一般、中等和重点防范区三级预防体系,并制定了相应的防治措施。研究成果可为云南省大坝白蚁危害精准防治提供科学指导,对其他地区白蚁预防工作具有一定借鉴意义。 展开更多
关键词 白蚁防治 土石坝 熵权-TOPSIS方法 分级预防体系 云南省
在线阅读 下载PDF
土石坝渗流预测的BiTCN-Attention-LSSVM模型研究
2
作者 傅蜀燕 杨石勇 +2 位作者 陈德辉 王子轩 欧斌 《水资源与水工程学报》 北大核心 2025年第1期118-128,共11页
为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN... 为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN从前、后两个方向捕获时序数据中的长期依赖关系,引入Attention机制帮助模型专注于与预测相关的关键局部特征,并将BiTCN-Attention深度处理后的特征输入LSSVM模型中进行预测,最后以2个不同的数据集分析了模型的预测效果。案例分析表明:与LSSVM、CNN-LSSVM和TCN-LSSVM相比,BiTCN-Attention-LSSVM模型预测的各项评价指标均为最优,在土石坝测压管水位预测中展现出更高的模型精度和稳定性;BiTCN与Attention的相互结合能够更好地提取时序数据中的相互依赖关系,将BiTCN-Attention提取的特征输入LSSVM中进行预测可获得良好的预测性能,数据集扩充处理后有效提高了模型的学习能力。 展开更多
关键词 土石坝测压管水位 渗流预测 双向时序卷积神经网络 注意力机制 最小二乘支持向量机
在线阅读 下载PDF
基于ICA-PSO-CNN的大坝变形预测研究
3
作者 杨霖 傅蜀燕 +4 位作者 吴曹东 王子轩 陈德辉 杨石勇 欧斌 《华北水利水电大学学报(自然科学版)》 北大核心 2025年第3期10-16,60,共8页
为提高大坝变形预测精度,针对传统大坝变形预测中出现的数据维度高、特征值选取困难、参数优化和模型调整较复杂等问题,提出了一种将独立主成分分析(ICA)和粒子群优化下的卷积神经网络(PSO-CNN)相结合的预测模型(ICA-PSO-CNN)。该模型通... 为提高大坝变形预测精度,针对传统大坝变形预测中出现的数据维度高、特征值选取困难、参数优化和模型调整较复杂等问题,提出了一种将独立主成分分析(ICA)和粒子群优化下的卷积神经网络(PSO-CNN)相结合的预测模型(ICA-PSO-CNN)。该模型通过ICA算法提取数据的特征值,减少沉冗信息,提高数据的精准表征能力,然后通过PSO对CNN参数进行迭代优化,进而得到最优参数下的CNN模型,使CNN模型的变形预测结果更准确。运用改进后的ICA-PSO-CNN模型对某混凝土双曲拱坝的变形进行预测,并与ICA-CNN模型和CNN模型的预测结果进行对比显示,改进的ICA-PSO-CNN模型的拟合效果和预测精度最好,为大坝变形预测提供了一种性能优良、精度较高的预测模型。 展开更多
关键词 变形预测 独立主成分分析 粒子群优化 卷积神经网络
在线阅读 下载PDF
高寒RFC坝施工越冬期温度应力控制
4
作者 陈德辉 王子轩 +2 位作者 杨霖 傅蜀燕 欧斌 《排灌机械工程学报》 北大核心 2025年第5期497-504,共8页
针对高寒地区堆石混凝土(RFC)坝,尤其岸边坝段在施工越冬期存在温度及应力控制的问题,在传统保温方法基础上,提出基岩保温和过渡层解决方案,以减轻岸边坝段温度应力影响.以云南省某RFC坝为模型,利用MSC-Patran进行前处理,ABAQUS进行计... 针对高寒地区堆石混凝土(RFC)坝,尤其岸边坝段在施工越冬期存在温度及应力控制的问题,在传统保温方法基础上,提出基岩保温和过渡层解决方案,以减轻岸边坝段温度应力影响.以云南省某RFC坝为模型,利用MSC-Patran进行前处理,ABAQUS进行计算和后处理.采用顺序耦合法,考虑分仓浇筑及气候变化等因素,建立有限元模型并进行仿真计算.结果表明:未保温时,坝体内外最大温差可达15.00℃,温度应力高达3.00 MPa,远超允许拉应力,存在破坏风险;实施保温措施后,坝体温度波动降低,内外温差控制在10.00℃左右,温度应力降至2.00 MPa以下;基岩保温措施进一步控制坝体边界温度及温度应力;引入过渡层后,内外温差下降至3.00℃左右,拉应力降低至1.00 MPa以下,显著提高了结构的稳定性和安全性.因此,高寒RFC坝施工越冬期有必要实施温控措施,提出的新方法能优化RFC坝温度应力控制. 展开更多
关键词 高寒地区 堆石混凝土坝 越冬期 温度应力控制 有限元法
在线阅读 下载PDF
基于EMD-小波阈值-LSTM模型的混凝土坝变形预测
5
作者 欧斌 张才溢 +4 位作者 陈德辉 王子轩 杨石勇 杨霖 傅蜀燕 《排灌机械工程学报》 北大核心 2025年第4期379-386,共8页
变形是混凝土坝结构性态演化的综合表征,是大坝安全监控的核心指标,但其量级微小且包含噪声.为提高混凝土坝变形预测的精度,首先采用经验模态法(EMD)对大坝变形监测数据进行预处理,将复杂的信号分解成若干个由高到低的固有模态函数(IMF... 变形是混凝土坝结构性态演化的综合表征,是大坝安全监控的核心指标,但其量级微小且包含噪声.为提高混凝土坝变形预测的精度,首先采用经验模态法(EMD)对大坝变形监测数据进行预处理,将复杂的信号分解成若干个由高到低的固有模态函数(IMF)分量,从而挖掘数据的规律与特征.对高频IMF分量运用小波阈值进行分解降噪,以消除噪声干扰.最后,将降噪后的IMF分量进行组合重构,实现原始变形数据的降噪提质.在此基础上,将重构后数据再运用长短期记忆神经网络(LSTM)进行预测.实例验证表明,改进EMD-LSTM模型在预测能力和精度上均显著优于传统的EMD-LSTM和小波-LSTM模型,为大坝的安全监测和运维提供了新的有效工具,有助于精准掌握大坝的结构性态,确保其安全稳定运行. 展开更多
关键词 变形预测 混凝土坝 经验模态法 小波阈值 长短期记忆神经网络
在线阅读 下载PDF
基于改进EMD-LSTM的混凝土坝变形预测模型 被引量:3
6
作者 欧斌 张才溢 +4 位作者 陈德辉 王子轩 杨石勇 杨霖 傅蜀燕 《水利水电科技进展》 CSCD 北大核心 2024年第6期93-99,共7页
针对混凝土坝变形监测数据的非线性和复杂性等特征,为提高混凝土坝变形预测的精度,提出了一种基于改进经验模态分解(EMD)法和长短期记忆(LSTM)神经网络的混凝土坝变形预测模型。该模型采用小波阈值方法对EMD法分解的高频分量进行优化处... 针对混凝土坝变形监测数据的非线性和复杂性等特征,为提高混凝土坝变形预测的精度,提出了一种基于改进经验模态分解(EMD)法和长短期记忆(LSTM)神经网络的混凝土坝变形预测模型。该模型采用小波阈值方法对EMD法分解的高频分量进行优化处理,在去除数据噪声的同时,尽可能保留原始数据的特征信息,并运用LSTM神经网络对处理后的数据进行时序预测。实例验证结果表明,该模型能够准确模拟坝体变形过程,具有较高的预测精度。 展开更多
关键词 大坝变形 经验模态分解法 长短期记忆神经网络 小波阈值 预测模型
在线阅读 下载PDF
基于CNN-BiLSTM的特高拱坝变形预测模型 被引量:6
7
作者 欧斌 张才溢 +3 位作者 傅蜀燕 杨霖 陈德辉 杨石勇 《排灌机械工程学报》 CSCD 北大核心 2024年第10期1031-1035,1043,共6页
为提高特高拱坝的变形预测精度,提出了一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的大坝变形预测模型.该模型利用CNN捕捉数据之间的空间关系,进行特征提取,再将其输入到BiLSTM中进行时间维度上的演变规律考虑.通过特征融... 为提高特高拱坝的变形预测精度,提出了一种基于卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的大坝变形预测模型.该模型利用CNN捕捉数据之间的空间关系,进行特征提取,再将其输入到BiLSTM中进行时间维度上的演变规律考虑.通过特征融合和全连接层的拼接,得到更丰富和综合的特征表示,最终映射到预测输出层进行拱坝变形预测.以某拱坝为例,验证了CNN-BiLSTM模型在RMSE等评价指标上具有高精度和稳定性,为混凝土拱坝结构的安全监测提供了新的思路. 展开更多
关键词 混凝土拱坝 卷积神经网络 双向长短期记忆网络 预测模型
在线阅读 下载PDF
基于KPCA降维分析的特高拱坝监测模型 被引量:3
8
作者 王子轩 陈德辉 +2 位作者 欧斌 杨石勇 傅蜀燕 《人民长江》 北大核心 2024年第10期246-254,共9页
为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GR... 为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GRU参数进行优化,进而构建出最优变形预测模型。以小湾特高拱坝变形数据为例,将KPCA-GSWOA-GRU模型与KPCA-WOA-GRU模型、PCA-GSWOA-GRU模型以及传统模型进行预测拟合对比。结果表明:KPCA-GSWOA-GRU模型有效降低了多重共线性问题,且在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R^(2))等方面均优于对比模型。 展开更多
关键词 特高拱坝 变形监测 降维分析 核主成分分析(KPCA) 全局搜索策略的鲸鱼优化算法(GSWOA) 门控循环单元(GRU) 小湾水电站
在线阅读 下载PDF
基于多层信号分解的混凝土拱坝变形监测模型 被引量:1
9
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算法 改进的共生生物搜索算法 变分模态分解
在线阅读 下载PDF
基于SSA-LSTM的土石坝浸润线预测模型 被引量:1
10
作者 刘振宇 傅蜀燕 +2 位作者 赵定柱 王奎 欧斌 《科学技术与工程》 北大核心 2024年第34期14813-14820,共8页
浸润线的异常分布对土石坝的稳定性和安全性构成严重威胁。因此,准确预测浸润线成为土石坝安全监控的核心任务。然而,测压管监测数据存在非线性和非平稳性问题,这使得浸润线的预测模型容易出现过拟合,进而影响预测精度。为了解决这一问... 浸润线的异常分布对土石坝的稳定性和安全性构成严重威胁。因此,准确预测浸润线成为土石坝安全监控的核心任务。然而,测压管监测数据存在非线性和非平稳性问题,这使得浸润线的预测模型容易出现过拟合,进而影响预测精度。为了解决这一问题,提出了一种基于SSA-LSTM模型的浸润线预测方法。该方法结合了麻雀搜索算法(sparrow search algorithm, SSA)和长短期神经网络(long-short-term neural Network, LSTM),通过优化模型的初始学习率和正则化参数,使输入数据与网络结构更好地匹配,从而提高预测精度。通过决定系数(R^(2))、平均绝对误差(mean absolute error, MAE)和均方根误差(root mean square error, RMSE)三个定量评价指标对模型预测结果进行了评估。结果表明,与传统的LSTM等模型相比,SSA-LSTM模型的预测精度有了显著提高,为土石坝的浸润线预测提供了有价值的参考。 展开更多
关键词 土石坝 预测模型 浸润线 麻雀搜索法 长短期神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部