期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Transformer和多通道卷积神经网络的情感分析研究
被引量:
8
1
作者
霍帅
庞春江
《计算机科学》
CSCD
北大核心
2021年第S01期349-356,共8页
文本情感分析是自然语言处理的经典领域之一。文中提出了一种基于transformer特征抽取器联合多通道卷积神经网络的文本情感分析的模型。该模型使用transformer特征提取器在传统Word2vector,Glove等方式训练的静态词向量的基础上来进行...
文本情感分析是自然语言处理的经典领域之一。文中提出了一种基于transformer特征抽取器联合多通道卷积神经网络的文本情感分析的模型。该模型使用transformer特征提取器在传统Word2vector,Glove等方式训练的静态词向量的基础上来进行单词的分层、动态表示,针对特定数据集采用Fine-Tuning方式来进行训练有效提升了词向量的表征能力。多通道卷积神经网络考虑了不同大小范围内词序列之间的依赖关系,有效进行特征抽取并达到降维的目的,能够有效捕捉句子的上下文语义信息,使模型捕获更多的语义情感信息,提升文本的语义表达能力,通过Softmax激活函数达成情感倾向分类的目标。模型分别在IMDb和SST-2电影评论数据集上进行实验,测试集上准确率达90.4%和90.2%,这明所提模型较传统词嵌入结合CNN或RNN的模型在分类精确度上有了一定程度的提升。
展开更多
关键词
情感分类
特征提取器
TRANSFORMER
多通道卷积神经网络
在线阅读
下载PDF
职称材料
题名
基于Transformer和多通道卷积神经网络的情感分析研究
被引量:
8
1
作者
霍帅
庞春江
机构
华北
电力
大学(保定)
云南电网有限公司电力科学研究院研究生工作站
出处
《计算机科学》
CSCD
北大核心
2021年第S01期349-356,共8页
基金
云南科技项目(YNKJXM20180019,YNKJXM20191572)。
文摘
文本情感分析是自然语言处理的经典领域之一。文中提出了一种基于transformer特征抽取器联合多通道卷积神经网络的文本情感分析的模型。该模型使用transformer特征提取器在传统Word2vector,Glove等方式训练的静态词向量的基础上来进行单词的分层、动态表示,针对特定数据集采用Fine-Tuning方式来进行训练有效提升了词向量的表征能力。多通道卷积神经网络考虑了不同大小范围内词序列之间的依赖关系,有效进行特征抽取并达到降维的目的,能够有效捕捉句子的上下文语义信息,使模型捕获更多的语义情感信息,提升文本的语义表达能力,通过Softmax激活函数达成情感倾向分类的目标。模型分别在IMDb和SST-2电影评论数据集上进行实验,测试集上准确率达90.4%和90.2%,这明所提模型较传统词嵌入结合CNN或RNN的模型在分类精确度上有了一定程度的提升。
关键词
情感分类
特征提取器
TRANSFORMER
多通道卷积神经网络
Keywords
Sentiment classification
Feature extractor
Transformer
Multi-channel convolutional neural network
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Transformer和多通道卷积神经网络的情感分析研究
霍帅
庞春江
《计算机科学》
CSCD
北大核心
2021
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部