以改良的体外模型为检测手段,测试了不同乳酸菌发酵大豆豆浆的产物对麦芽糖酶的抑制作用。在测试过的乳酸菌中,以植物乳杆菌ST-Ⅲ(Lactobacillus plantarum ST-Ⅲ)在37℃发酵大豆豆浆获得的发酵产物对麦芽糖酶的抑制效果最强。随后,考...以改良的体外模型为检测手段,测试了不同乳酸菌发酵大豆豆浆的产物对麦芽糖酶的抑制作用。在测试过的乳酸菌中,以植物乳杆菌ST-Ⅲ(Lactobacillus plantarum ST-Ⅲ)在37℃发酵大豆豆浆获得的发酵产物对麦芽糖酶的抑制效果最强。随后,考察了接种量、豆浆固形物含量、发酵温度对植物乳杆菌ST-Ⅲ发酵豆浆对麦芽糖酶抑制活性的影响。结果表明,植物乳杆菌ST-Ⅲ发酵大豆豆浆产生麦芽糖酶抑制物的最适条件分别为接种量2%(v/v)、豆浆固形物含量5%(w/v)、发酵温度37℃。在优化条件下,发酵8 h获得的发酵豆浆对麦芽糖酶的抑制率达到80%。展开更多
文摘以改良的体外模型为检测手段,测试了不同乳酸菌发酵大豆豆浆的产物对麦芽糖酶的抑制作用。在测试过的乳酸菌中,以植物乳杆菌ST-Ⅲ(Lactobacillus plantarum ST-Ⅲ)在37℃发酵大豆豆浆获得的发酵产物对麦芽糖酶的抑制效果最强。随后,考察了接种量、豆浆固形物含量、发酵温度对植物乳杆菌ST-Ⅲ发酵豆浆对麦芽糖酶抑制活性的影响。结果表明,植物乳杆菌ST-Ⅲ发酵大豆豆浆产生麦芽糖酶抑制物的最适条件分别为接种量2%(v/v)、豆浆固形物含量5%(w/v)、发酵温度37℃。在优化条件下,发酵8 h获得的发酵豆浆对麦芽糖酶的抑制率达到80%。