期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进k-means算法的中文词义归纳
被引量:
8
1
作者
张宜浩
金澎
孙锐
《计算机应用》
CSCD
北大核心
2012年第5期1332-1334,共3页
汉语中一词多义现象普遍存在,词义归纳就是对在不同语境中具有相同语义的词进行归类,本质上是一聚类问题。目前广泛采用无指导的聚类方法对词义归纳进行研究,提出一种改进的k-means算法,该算法主要从初始簇中心的选取以及簇均值的计算...
汉语中一词多义现象普遍存在,词义归纳就是对在不同语境中具有相同语义的词进行归类,本质上是一聚类问题。目前广泛采用无指导的聚类方法对词义归纳进行研究,提出一种改进的k-means算法,该算法主要从初始簇中心的选取以及簇均值的计算两个方面进行改进,在一定程度上克服了其对"噪声"和孤立点数据的敏感。在特征表示上用同义词词林中词的分类编号来降低特征维度。实验表明改进k-means算法在性能上有较大的提升,F-Score达到了75.8%。
展开更多
关键词
词义归纳
K-MEANS算法
聚类
同义词词林
在线阅读
下载PDF
职称材料
题名
基于改进k-means算法的中文词义归纳
被引量:
8
1
作者
张宜浩
金澎
孙锐
机构
乐山师范学院
计算机科学
学院
乐山师范学院智能信息处理与应用实验室
出处
《计算机应用》
CSCD
北大核心
2012年第5期1332-1334,共3页
基金
四川省教育厅科研项目(10ZB025)
国家自然科学基金资助项目(61003206)
文摘
汉语中一词多义现象普遍存在,词义归纳就是对在不同语境中具有相同语义的词进行归类,本质上是一聚类问题。目前广泛采用无指导的聚类方法对词义归纳进行研究,提出一种改进的k-means算法,该算法主要从初始簇中心的选取以及簇均值的计算两个方面进行改进,在一定程度上克服了其对"噪声"和孤立点数据的敏感。在特征表示上用同义词词林中词的分类编号来降低特征维度。实验表明改进k-means算法在性能上有较大的提升,F-Score达到了75.8%。
关键词
词义归纳
K-MEANS算法
聚类
同义词词林
Keywords
word sense induction
k-means algorithm
clustering
Tongyici Cilin
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进k-means算法的中文词义归纳
张宜浩
金澎
孙锐
《计算机应用》
CSCD
北大核心
2012
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部