期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于拟牛顿法的深度强化学习在车联网边缘计算中的研究
被引量:
2
1
作者
章坚武
芦泽韬
+1 位作者
章谦骅
詹明
《通信学报》
EI
CSCD
北大核心
2024年第5期90-100,共11页
为了解决车联网中由于多任务和资源限制导致的任务卸载决策不理想的问题,提出了拟牛顿法的深度强化学习双阶段在线卸载(QNRLO)算法。该算法首先引入批归一化技术优化深度神经网络的训练过程,随后采用拟牛顿法进行优化,有效逼近最优解。...
为了解决车联网中由于多任务和资源限制导致的任务卸载决策不理想的问题,提出了拟牛顿法的深度强化学习双阶段在线卸载(QNRLO)算法。该算法首先引入批归一化技术优化深度神经网络的训练过程,随后采用拟牛顿法进行优化,有效逼近最优解。通过此双阶段优化,算法显著提升了在多任务和动态无线信道条件下的性能,提高了计算效率。通过引入拉格朗日算子和重构的对偶函数,将非凸优化问题转化为对偶函数的凸优化问题,确保算法的全局最优性。此外,算法考虑了车联网模型中的系统传输时间分配,增强了模型的实用性。与现有算法相比,所提算法显著提高了任务卸载的收敛性和稳定性,并能有效处理车联网中的任务卸载问题,具有较高的实用性和可靠性。
展开更多
关键词
车联网
任务卸载
深度强化学习
拟牛顿法
在线阅读
下载PDF
职称材料
题名
基于拟牛顿法的深度强化学习在车联网边缘计算中的研究
被引量:
2
1
作者
章坚武
芦泽韬
章谦骅
詹明
机构
杭州电子科技大学通信工程学院
之江实验室天基计算研究中心
浙江大学信息与电子工程学院
台州学院电子与信息工程学院
出处
《通信学报》
EI
CSCD
北大核心
2024年第5期90-100,共11页
基金
浙江省自然科学基金重点项目(No.LZ23F010001)。
文摘
为了解决车联网中由于多任务和资源限制导致的任务卸载决策不理想的问题,提出了拟牛顿法的深度强化学习双阶段在线卸载(QNRLO)算法。该算法首先引入批归一化技术优化深度神经网络的训练过程,随后采用拟牛顿法进行优化,有效逼近最优解。通过此双阶段优化,算法显著提升了在多任务和动态无线信道条件下的性能,提高了计算效率。通过引入拉格朗日算子和重构的对偶函数,将非凸优化问题转化为对偶函数的凸优化问题,确保算法的全局最优性。此外,算法考虑了车联网模型中的系统传输时间分配,增强了模型的实用性。与现有算法相比,所提算法显著提高了任务卸载的收敛性和稳定性,并能有效处理车联网中的任务卸载问题,具有较高的实用性和可靠性。
关键词
车联网
任务卸载
深度强化学习
拟牛顿法
Keywords
Internet of vehicles
task offloading
deep reinforcement learning
Quasi-Newton method
分类号
TN92 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于拟牛顿法的深度强化学习在车联网边缘计算中的研究
章坚武
芦泽韬
章谦骅
詹明
《通信学报》
EI
CSCD
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部