期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于GIS和多种机器学习算法的广东省森林火灾预测模型 被引量:4
1
作者 朱龙祥 王自法 +2 位作者 张昕 韩赟希 周良辰 《林业工程学报》 CSCD 北大核心 2024年第3期159-167,共9页
森林火灾是严重的自然灾害,造成严重的森林资源破坏和社会经济损失。广东省是我国森林火灾高发区之一,针对该区域的森林火灾发生特点,准确预测可提供有效的防范措施。大多数森林火灾预测研究仅从气象因素或少数特征因素出发考虑,并未考... 森林火灾是严重的自然灾害,造成严重的森林资源破坏和社会经济损失。广东省是我国森林火灾高发区之一,针对该区域的森林火灾发生特点,准确预测可提供有效的防范措施。大多数森林火灾预测研究仅从气象因素或少数特征因素出发考虑,并未考虑到森林火灾的发生的复杂性以及预测准确率较低的问题。因此,本研究提出一种基于GIS和机器学习结合的高准确率的森林火灾预测方法,将XGBoost(eXtreme gradent boosting,XGB)、Light GBM(light gradient boosting machine)、CatBoost(categorical boosting)、深度神经网络(DNN)、随机森林(RF)5种机器学习算法作为预测模型;基于气象数据、地形数据、植被数据、基础设施数据、社会和人类数据,选择了24个特征因素作为模型输入。从更多林火发生特征因素出发,构建广东省日尺度林火发生预测模型;同时引入基于Optuna框架的贝叶斯自动超参数优化方法,其自动超参数优化特性,在面对不同数据结构时可以自动优化参数组合,提升林火预测模型的准确率。结果表明,XGBoost模型最优,准确率为91.30%;利用2018年的数据验证林火预测模型,其验证准确率结果为87.81%;利用GIS绘制广东省森林火灾风险图,同时模型准确率明显优于其他研究的林火预测模型。本研究可为广东省林业防火提供科学参考。 展开更多
关键词 森林火灾 机器学习 GIS XGBoost Optuna超参数优化 广东省
在线阅读 下载PDF
基于Stacking模型融合策略的日本俯冲带板缘地震动预测 被引量:1
2
作者 党浩天 王自法 +4 位作者 赵登科 位栋梁 王祥琪 WANG Jianming 李兆焱 《世界地震工程》 北大核心 2024年第1期80-95,共16页
高精度的地震动预测模型有助于提高地震灾害的预警和应对能力。传统回归方法构建地震动预测模型时提前设定了方程的形式,此种方法存在一定局限性,难以反映地震动传播过程中的复杂规律,因此越来越多的学者尝试应用机器学习方法构建地震... 高精度的地震动预测模型有助于提高地震灾害的预警和应对能力。传统回归方法构建地震动预测模型时提前设定了方程的形式,此种方法存在一定局限性,难以反映地震动传播过程中的复杂规律,因此越来越多的学者尝试应用机器学习方法构建地震动预测模型。但采用单一的机器学习算法,难以从数据中捕捉到更多规律,最终导致模型精度难以提升。本文基于日本KiK-net和K-Net强震台网收集到的俯冲带板缘地震动记录,使用Stacking模型融合策略,以LightGBM、XGBoost和CatBoost算法作为基学习器,线性回归算法作为元学习器,引入客观且高效的贝叶斯优化算法对模型进行超参数优化,最终训练并提出了一种适用于日本俯冲带板缘地震动预测的融合模型Stacking-Interface。对比分析所提出模型、单一机器学习模型和传统模型,发现机器学习模型的精度普遍高于传统模型,且相较于单一的机器学习模型,融合模型的预测能力有一定的提升;通过与实际地震动记录的对比和特征参数敏感性分析,验证了所提模型的可靠性和泛化能力。研究方法和结果能够为地震风险分析提供参考。 展开更多
关键词 地震动预测 STACKING 俯冲带板缘地震 部分依赖图
在线阅读 下载PDF
考虑滞后效应的CNN-BIGRU-Attention预测降水型滑坡位移
3
作者 肖金涛 王自法 +2 位作者 王超 赵登科 李兆焱 《人民黄河》 北大核心 2025年第3期135-140,145,共7页
为研究降水对滑坡的影响,基于大沙窝滑坡日降水量和位移数据,采用移动平均法将位移分解为趋势项位移和周期项位移,采用卷积神经网络(CNN)预测趋势项位移,采用带有注意力机制(Attention)的卷积神经网络-双向门控循环单元(CNN-BIGRU)模型... 为研究降水对滑坡的影响,基于大沙窝滑坡日降水量和位移数据,采用移动平均法将位移分解为趋势项位移和周期项位移,采用卷积神经网络(CNN)预测趋势项位移,采用带有注意力机制(Attention)的卷积神经网络-双向门控循环单元(CNN-BIGRU)模型预测周期项位移,通过叠加趋势项位移和周期项位移得到最终预测位移结果。采用斯皮尔曼相关系数结合滞后性研究分析变量间的滞后关系。以BIGRU-Attention、门控循环单元(GRU)、长短期记忆网络(LSTM)模型为对照,比较CNN-BIGRU-Attention模型预测周期项位移的精确性。结果表明:CNN模型预测以3、6、12 h步长的趋势项位移的R^(2)值分别为0.992、0.977、0.965;CNN-BIGRU-Attention模型预测以3、6、12 h步长的周期项位移的R~2值分别为0.963、0.939、0.896,预测精度均高于BIGRU-Attention、GRU、LSTM模型;基于呷任依村滑坡监测数据,验证了CNN-BIGRU-Attention模型的泛化性。 展开更多
关键词 位移预测 CNN BIGRU ATTENTION 大沙窝滑坡 呷任依村滑坡
在线阅读 下载PDF
泸定M s6.8地震房屋损失快速评估 被引量:2
4
作者 赵登科 王自法 +5 位作者 李兆焱 周阳 高曹珀 WANG Jianming 位栋梁 张昕 《世界地震工程》 北大核心 2023年第2期178-188,共11页
震后房屋损失的快速评估对于灾后应急救援等至关重要。现有的地震风险评估方法要么仅提供损失的均值,要么以某一方差常数来描述损失的分布特征,均无法准确有效地反映各空间位置点损失的随机性及相关关系,最终影响整体损失评估结果的准... 震后房屋损失的快速评估对于灾后应急救援等至关重要。现有的地震风险评估方法要么仅提供损失的均值,要么以某一方差常数来描述损失的分布特征,均无法准确有效地反映各空间位置点损失的随机性及相关关系,最终影响整体损失评估结果的准确度。本文基于Copula理论,提出了一种适用于地震巨灾风险分析的相关随机变量模拟方法,好处是在实现快速计算的同时,能够考虑地震损失中的不确定性与相关性。利用所提方法对2022年9月5日四川泸定6.8级地震的房屋损失进行评估,得到了各结构类型与县区的损失分布,并与PAGER方法所得到的损失分布进行对比。结果表明:此次地震房屋总体损失超过89.8%的概率处于10~100亿元人民币量级水平,其中超过50.8%的概率为20~50亿元人民币;损失较大的三个县区分别是泸定县、石棉县和荥经县,砌体结构的经济损失约是框架结构的2倍;相比于PAGER,该方法给出的损失概率分布形状更加灵活,能够详细地反映不同县区的房屋损失特征。研究方法和结果为震后损失快速评估技术提供参考,也为未来地震的灾后应急救援等提供科学依据。 展开更多
关键词 泸定地震 损失快速估计 COPULA理论 相关随机变量模拟
在线阅读 下载PDF
地震损失的空间相关性及其对震害损失估计的影响 被引量:2
5
作者 周阳 王自法 +1 位作者 石磊 仝文博 《世界地震工程》 CSCD 北大核心 2022年第2期151-159,共9页
在地震危险性分析或者地震损失分布评估中,需要考虑地震损失的空间相关性的影响。目前对地震损失空间相关性的研究,主要是基于经验或半经验的方法,没有经过实际地震损失分布的验证。本文基于2011年东日本大地震收集到的55万条建筑物破... 在地震危险性分析或者地震损失分布评估中,需要考虑地震损失的空间相关性的影响。目前对地震损失空间相关性的研究,主要是基于经验或半经验的方法,没有经过实际地震损失分布的验证。本文基于2011年东日本大地震收集到的55万条建筑物破坏的详细数据得出了基于实际震害的地震损失随距离关系变化的空间相关性衰减规律,给出了一个基于实际数据的拟合公式,并将其应用于最新开发的基于高精度模拟的巨灾风险分析中。利用北京地区多个地震为算例,研究了实现空间相关性模拟的样本精度问题,并且给出了不同空间相关系数对地震损失分布的影响,从而能为未来的防震减灾工作提供更好的地震损失估计结果。 展开更多
关键词 空间相关性 地震损失 日本震害资料 不确定性 地震巨灾风险
在线阅读 下载PDF
基于机器学习-网格搜索优化的砂土液化预测 被引量:4
6
作者 王昭栋 王自法 +2 位作者 李兆焱 苗鹏宇 吴禄源 《振动与冲击》 EI CSCD 北大核心 2024年第5期82-93,共12页
砂土液化是一种破坏力较强的地震次生灾害,传统的砂土液化判别方法存在一定的局限性。提出两种液化判别方法,第一种是基于新西兰岩土数据库(New Zealand Geotechnical Database,NZGD)中519组静力触探试验数据,建立具有砂土液化预测功能... 砂土液化是一种破坏力较强的地震次生灾害,传统的砂土液化判别方法存在一定的局限性。提出两种液化判别方法,第一种是基于新西兰岩土数据库(New Zealand Geotechnical Database,NZGD)中519组静力触探试验数据,建立具有砂土液化预测功能的机器学习模型。首先建立支持向量机(support vector machine,SVM)、随机森林(random forest,RF)、XGboost(eXtreme gradient boosting,XGB)三种机器学习分类模型,运用网格搜索(GridSearchCV)法进行超参数优化后,采用整体精度(overall accuracy,OA)、精确率(P)、召回率(R)、F_(1)值对模型进行性能评估,对历史液化数据进行模型验证并与国内外方法进行结果对比。第二种是基于历史震害数据,采用经验判断法确定的静力触探初判条件。结果表明:随机森林可作为一种具有较强的预测能力的液化判别模型,通过与国内《岩土工程勘察规范》以及国际Olsen方法进行对比,选取要素简便且计算迅速的随机森林能够达到与上述两种权威方法接近的准确性,是一种可实行的液化判别模型;此外,基于历史液化数据库归结出不同烈度下,具备液化埋深限制的锥尖阻力阈值,经数据验证在7烈度区、8烈度区、9烈度区的准确率良好,与《岩土工程勘察规范》进行对比发现有可操作性好、可解释性强、可适用性广等优点。所建立的模型对砂土液化预测具有较强的适用性,静力触探初判条件亦可作为快速液化判别的参考值,两种方法结合可对科学研究和工程建设提供较好的参考价值。 展开更多
关键词 砂土液化 机器学习 液化预测 静力触探初判条件 网格搜索
在线阅读 下载PDF
基于时频变换和卷积神经网络的结构损伤识别 被引量:2
7
作者 李治甫 康帅 +2 位作者 王自法 董正方 赫中营 《防灾减灾工程学报》 CSCD 北大核心 2023年第6期1275-1283,共9页
为了解决将单传感器时域数据直接作为卷积神经网络(CNN)的输入所引起的损伤识别精度不高的问题,提出基于小波包变换(DWPT)和快速傅里叶变换(FFT)的卷积神经网络识别方法。以短钢梁桥现场试验测得的数据集为例,将单传感器数据样本分别进... 为了解决将单传感器时域数据直接作为卷积神经网络(CNN)的输入所引起的损伤识别精度不高的问题,提出基于小波包变换(DWPT)和快速傅里叶变换(FFT)的卷积神经网络识别方法。以短钢梁桥现场试验测得的数据集为例,将单传感器数据样本分别进行DWPT和FFT变换,使用变换后的特征训练1D-CNN网络,训练好的网络测试精度有明显的提升,其识别精度均高于多个传感器数据直接作为输入的识别精度。同时分析了对噪声样本和异源(结构上未曾参与网络训练的传感器)数据的识别情况,结果表明对含噪声样本先进行时频变换再训练网络能显著提升对噪声样本的识别精度,而且能改善训练好的网络难以对异源传感器数据进行识别的问题,最后通过卡塔尔大学看台现场试验数据进一步论证上述结论。 展开更多
关键词 损伤识别 快速傅里叶变换 小波包变换 深度学习 CNN
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部