期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向知识图谱的二阶段复杂问句生成框架
1
作者 张琨 王元卓 +6 位作者 仇韫琦 白龙 江旭晖 侯坤 岑建何 沈华伟 程学旗 《电子学报》 北大核心 2025年第6期2104-2117,共14页
面向知识图谱的问句生成(Question Generation over Knowledge Graph,KGQG)任务是根据知识图谱(Knowledge Graph,KG)子图生成自然语言问句.现有方法通常是直接将实例化的KG子图转换为问句,并且大多采用教师强制(Teacher-Forcing)的训练... 面向知识图谱的问句生成(Question Generation over Knowledge Graph,KGQG)任务是根据知识图谱(Knowledge Graph,KG)子图生成自然语言问句.现有方法通常是直接将实例化的KG子图转换为问句,并且大多采用教师强制(Teacher-Forcing)的训练策略.然而,当前方法仍然面临两个主要挑战:(1)实例化的KG子图缺乏确定性查询意图的整合,导致输入与目标输出之间存在语义歧义现象;(2)采用教师强制训练策略训练的生成模型在推理阶段存在曝光偏差问题.为了缓解语义歧义带来的挑战,本文提出了一个复杂问句生成框架,其包括两个阶段,即事实-查询和查询-问句生成阶段.在第一阶段,本文设计了一个查询图生成器,将KG子图转换为具有不同查询意图的查询图.在第二阶段,本文提出了一个问句生成模型,该模型利用密集连接图卷积网络(Densely Connected Graph Convolutional Network,DCGCN)对查询图进行编码,并利用双向自回归变换器(Bidirectional and Auto-Regressive Transformers,BART)模型进行解码以生成问句.此外,为了减轻曝光偏差问题,本文引入了生成对抗模仿学习对问句生成模型进行训练.其中,所采用的判别器通过模仿标记数据自适应地学习奖励函数,并指导问句生成模型探索潜在问题空间中的高奖励区域.本文在三个广泛使用的数据集上进行了大量实验,结果表明所提出的框架具有显著的有效性. 展开更多
关键词 问句生成(KGQG) 知识图谱(KG) 文本生成 曝光偏差 生成对抗模仿学习
在线阅读 下载PDF
社交知识图谱研究综述 被引量:10
2
作者 江旭晖 沈英汉 +3 位作者 李子健 王元卓 尹芷仪 沈华伟 《计算机学报》 EI CAS CSCD 北大核心 2023年第2期304-330,共27页
作为通用的知识结构化表示形式,知识图谱被成功应用于医疗、金融、安全等领域.社交知识图谱是一种以人为中心的知识图谱,其融合了动态演化的社交知识.作为知识图谱概念的延伸,社交知识图谱涵盖人、物、事、地等异质信息及其复杂关联;由... 作为通用的知识结构化表示形式,知识图谱被成功应用于医疗、金融、安全等领域.社交知识图谱是一种以人为中心的知识图谱,其融合了动态演化的社交知识.作为知识图谱概念的延伸,社交知识图谱涵盖人、物、事、地等异质信息及其复杂关联;由于其融入了来自社交网络的强时效性知识,能够准确地描述人员的即时状态及其演化趋势,被广泛应用于推荐系统、社交分析等以人为中心的应用中.当前,社交知识图谱的相关工作不断涌现,但缺乏统一的形式化定义以及系统性的分析.基于此,本文首先梳理了社交知识图谱的相关概念,并给出了社交知识图谱的形式化定义.然后从社交知识图谱的定义出发,对其动态性、异质性、情感性、互演化性等性质进行分析.接下来围绕社交知识图谱的生命周期,梳理了社交知识图谱的构建、融合、表示和推理的相关代表性工作.最后介绍了社交知识图谱的相关应用,并展望了社交知识图谱的未来发展蓝图. 展开更多
关键词 社交知识图谱 社交网络 知识图谱 知识推理 图表示学习 知识抽取 网络融合
在线阅读 下载PDF
面向知识库问答的问句语义解析研究综述 被引量:8
3
作者 仇韫琦 王元卓 +3 位作者 白龙 尹芷仪 沈华伟 白硕 《电子学报》 EI CAS CSCD 北大核心 2022年第9期2242-2264,共23页
知识库问答(Knowledge Base Question Answering,KBQA)借助知识库中精度高、关联性强的结构化知识,为给定的复杂事实型问句提供准确、简短的答案.语义解析是知识库问答的主流方法之一,该类方法在给定的问句语义表征形式下,将非结构化的... 知识库问答(Knowledge Base Question Answering,KBQA)借助知识库中精度高、关联性强的结构化知识,为给定的复杂事实型问句提供准确、简短的答案.语义解析是知识库问答的主流方法之一,该类方法在给定的问句语义表征形式下,将非结构化的问句映射为结构化的语义表征,再将其改写为知识库查询获取答案.目前,面向知识库问答的语义解析方法主要面临三个挑战:首先是如何选择合适的语义表征形式以表达问句的语义,然后是如何解析问句的复杂语义并输出相应的语义表征,最后是如何应对特定领域中数据标注成本高昂、高质量数据匮乏的问题.本文从上述挑战出发,分析了知识库问答中常用的语义表征的特点与不足,然后梳理现有方法并总结分析其如何应对问句的复杂语义,接着介绍了当前方法在标注数据匮乏的低资源场景下的尝试,最后展望并讨论了面向知识库问答的语义解析的未来发展方向. 展开更多
关键词 知识库 问答 语义表征 语义解析 低资源
在线阅读 下载PDF
时态知识图谱的推理研究综述 被引量:10
4
作者 沈英汉 江旭晖 +4 位作者 王元卓 李紫宣 李子健 谭鹤翔 沈华伟 《计算机学报》 EI CAS CSCD 北大核心 2023年第6期1272-1301,共30页
随着社交网络、物端感知等技术快速发展,网络空间中涌现了大量的交互、话题、事件、新闻等数据,蕴含大量动态演化、强时效性的知识.较于忽略知识中时间信息的传统知识图谱,时态知识图谱通过建模知识的时效性以描述动态变化的现实世界,... 随着社交网络、物端感知等技术快速发展,网络空间中涌现了大量的交互、话题、事件、新闻等数据,蕴含大量动态演化、强时效性的知识.较于忽略知识中时间信息的传统知识图谱,时态知识图谱通过建模知识的时效性以描述动态变化的现实世界,为时间紧耦合的应用提供有效支持.然而,时态知识图谱无法确保涵盖全量知识,知识的缺失严重影响应用性能,需要推理模型自动挖掘新的知识,以解释事物的历史状态,预测未来发展趋势并描述演化规律.由于实际应用的迫切需要,近年来,时态知识图谱的推理研究工作层出不穷,逐渐引起学术界和工业界的广泛关注.本文对近年来时态知识图谱的推理工作进行全面介绍和总结.首先,介绍了时态知识图谱的推理相关概念与问题描述;其次,介绍了面向补全任务的推理模型与面向预测任务的推理模型,对其进行比较分析;之后总结了时态知识图谱推理的数据集、推理任务、相关指标以及应用场景;最后展望时态知识图谱推理的未来研究趋势.综上,本文致力于为时态知识图谱的推理领域研究人员提供具有价值的参考,以推动该领域进一步发展. 展开更多
关键词 时态知识图谱 时态知识推理 知识补全 知识预测 知识图谱
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部