期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种改进的tiny YOLO v3煤矸石快速识别模型 被引量:9
1
作者 郑道能 《工矿自动化》 CSCD 北大核心 2023年第4期113-119,共7页
传统的煤矸石分选方法效率低下、安全隐患较大、应用范围受限,现有的基于机器视觉的煤矸石图像识别方法在模型识别速度与精度上难以平衡,未综合考虑输入图像尺寸不一、重要通道权重较低及卷积参数量大对模型精度的影响。针对上述问题,在... 传统的煤矸石分选方法效率低下、安全隐患较大、应用范围受限,现有的基于机器视觉的煤矸石图像识别方法在模型识别速度与精度上难以平衡,未综合考虑输入图像尺寸不一、重要通道权重较低及卷积参数量大对模型精度的影响。针对上述问题,在tiny YOLO v3模型的基础上,提出了一种改进的tiny YOLO v3煤矸石快速识别模型。首先,在tiny YOLO v3模型引入多卷积核组合池化的特征金字塔池化(SPP)网络,确保输入特征图可被处理为固定尺寸再输出;其次,引入RGB通道权重可调节的压缩激励(SE)模块,用于增强前几层特征图各通道之间的联系,强调感兴趣通道的特征值和不同目标特征之间的差异性,确保关键信息的捕捉和网络灵敏度;最后,引入包含0权值点的空洞卷积替代tiny YOLO v3模型中部分卷积层,在不增加模型参数的前提下,可捕获多尺度上下文信息进而扩大感受野,提高模型计算速度。将该模型分别与tiny YOLO v3模型、Faster RCNN模型、YOLO v5系列模型进行对比,结果表明:(1)与tiny YOLO v3相比,改进的tiny YOLO v3煤矸石快速识别模型的识别准确性和快速性都有显著提升。(2)与Faster RCNN相比,改进的tiny YOLO v3煤矸石快速识别模型训练时间减少了65.72%,识别精度增幅为11.83%,识别召回率增幅为0.5%,模型平均精度均值(m AP)增幅为3.02%。(3)与YOLO系列模型相比,改进的tiny YOLO v3煤矸石快速识别模型在保持识别精度优势的情况下识别速度有大幅增长。消融实验结果表明:改进的tiny YOLO v3煤矸石快速识别模型的识别准确率为99.4%,较加入SPP网络的tiny YOLO v3模型的识别准确率提高了4.9%;测试每张图片耗时12.5 ms,较加入SPP网络的tiny YOLO v3模型耗时减少了1 ms。 展开更多
关键词 煤矸石分选 煤矸石图像识别 特征金字塔池化 压缩激励模块 空洞卷积 tiny YOLO v3
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部