期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进的全卷积网络模型预测局部进展期直肠癌新辅助放化疗疗效
被引量:
2
1
作者
王方
庞晓琳
范新娟
《协和医学杂志》
CSCD
2022年第4期605-612,共8页
目的建立基于MRI影像图像预测局部进展期直肠癌(locally advanced rectal cancer,LARC)新辅助放化疗(neoadjuvant chemoradiotherapy,nCRT)后病理学完全缓解(pathological complete response,pCR)模型,以辅助患者个性化治疗方案的制订...
目的建立基于MRI影像图像预测局部进展期直肠癌(locally advanced rectal cancer,LARC)新辅助放化疗(neoadjuvant chemoradiotherapy,nCRT)后病理学完全缓解(pathological complete response,pCR)模型,以辅助患者个性化治疗方案的制订。方法回顾性纳入2013年6月至2018年12月中山大学附属第六医院接受nCRT治疗且行全直肠系膜切除术组织病理对治疗效果进行评定的LARC患者。按1∶2的比例将患者依照住院时间先后顺序分为Data A与Data B 2个数据集。其中Data A数据集用于语义分割模型训练,Data B数据集按7∶3的比例随机分为训练集和验证集,分别用于pCR预测模型训练与评价。收集Data A数据集病例的T2加权MRI影像资料,采用改进的全卷积网络(fully convolutional networks,FCN)模型对肿瘤区域进行语义分割,建立语义分割模型并提取最终卷积层中的影像特征。采用最小绝对值收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归法对提取的影像特征进行筛选,构建可预测pCR状态的支持向量机(support vector machine,SVM)分类器(预测模型)。以Data B训练集数据为基础,对该预测模型的性能进行训练,进一步在Data B验证集中对其性能进行评价。结果共入选符合纳入和排除标准的LARC患者304例,nCRT治疗后82例判定为pCR,222例为非pCR。2013年6月至2015年11月的103例患者为Data A数据集,2015年12月至2018年12月的201例患者为Data B数据集。Data B数据集中,训练集140例、验证集61例。改进的FCN模型对Data B数据集图像分割的Dice值为0.79(95%CI:0.65~0.81),灵敏度为80%(95%CI:77%~83%),特异度为72%(95%CI:64%~85%)。语义分割模型共提取最终卷积层中512个影像特征,经LASSO回归筛选后保留7个,用于pCR状态预测。预测模型在Data B训练集中预测pCR的曲线下面积(area under the curve,AUC)为0.65(95%CI:0.61~0.71),在Data B验证集中的AUC为0.69(95%CI:0.59~0.74)。结论本研究提出的改进的FCN模型,对MRI图像进行语义分割具有较高的准确度。基于该方法构建的模型预测LARC患者接受nCRT治疗后pCR状态具有可行性。
展开更多
关键词
局部进展期直肠癌
新辅助治疗
病理学完全缓解
深度学习
在线阅读
下载PDF
职称材料
题名
基于改进的全卷积网络模型预测局部进展期直肠癌新辅助放化疗疗效
被引量:
2
1
作者
王方
庞晓琳
范新娟
机构
中山大学
胃肠病学研究所
中山大学附属第六医院
放射
肿瘤科
中山大学附属第六医院
病理科
出处
《协和医学杂志》
CSCD
2022年第4期605-612,共8页
基金
广东省科技计划项目(2019B030316003)。
文摘
目的建立基于MRI影像图像预测局部进展期直肠癌(locally advanced rectal cancer,LARC)新辅助放化疗(neoadjuvant chemoradiotherapy,nCRT)后病理学完全缓解(pathological complete response,pCR)模型,以辅助患者个性化治疗方案的制订。方法回顾性纳入2013年6月至2018年12月中山大学附属第六医院接受nCRT治疗且行全直肠系膜切除术组织病理对治疗效果进行评定的LARC患者。按1∶2的比例将患者依照住院时间先后顺序分为Data A与Data B 2个数据集。其中Data A数据集用于语义分割模型训练,Data B数据集按7∶3的比例随机分为训练集和验证集,分别用于pCR预测模型训练与评价。收集Data A数据集病例的T2加权MRI影像资料,采用改进的全卷积网络(fully convolutional networks,FCN)模型对肿瘤区域进行语义分割,建立语义分割模型并提取最终卷积层中的影像特征。采用最小绝对值收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归法对提取的影像特征进行筛选,构建可预测pCR状态的支持向量机(support vector machine,SVM)分类器(预测模型)。以Data B训练集数据为基础,对该预测模型的性能进行训练,进一步在Data B验证集中对其性能进行评价。结果共入选符合纳入和排除标准的LARC患者304例,nCRT治疗后82例判定为pCR,222例为非pCR。2013年6月至2015年11月的103例患者为Data A数据集,2015年12月至2018年12月的201例患者为Data B数据集。Data B数据集中,训练集140例、验证集61例。改进的FCN模型对Data B数据集图像分割的Dice值为0.79(95%CI:0.65~0.81),灵敏度为80%(95%CI:77%~83%),特异度为72%(95%CI:64%~85%)。语义分割模型共提取最终卷积层中512个影像特征,经LASSO回归筛选后保留7个,用于pCR状态预测。预测模型在Data B训练集中预测pCR的曲线下面积(area under the curve,AUC)为0.65(95%CI:0.61~0.71),在Data B验证集中的AUC为0.69(95%CI:0.59~0.74)。结论本研究提出的改进的FCN模型,对MRI图像进行语义分割具有较高的准确度。基于该方法构建的模型预测LARC患者接受nCRT治疗后pCR状态具有可行性。
关键词
局部进展期直肠癌
新辅助治疗
病理学完全缓解
深度学习
Keywords
locally advanced rectal cancer
neoadjuvant chemoradiotherapy
pathological complete response
deep learning
分类号
R735.3 [医药卫生—肿瘤]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进的全卷积网络模型预测局部进展期直肠癌新辅助放化疗疗效
王方
庞晓琳
范新娟
《协和医学杂志》
CSCD
2022
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部