针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设...针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设计的自适应律实时调整神经网络权值,实现对模型误差和外部干扰的有效补偿。同时,基于Lyapunov稳定性理论设计了固定翼无人机的纵向姿态滑模控制律,确保闭环系统的全局稳定性和有限时间收敛特性。仿真结果表明,与传统PID控制及滑模控制方法相比,本文方法在存在参数摄动和外部干扰的情况下,能够显著提高固定翼无人机纵向姿态控制系统的跟踪精度和鲁棒性能。展开更多
文摘针对固定翼无人机纵向姿态控制中存在模型不确定性和外部干扰等问题,本文提出了一种基于径向基函数神经网络(Radial Basis Function Neural Network,RBFNN)的自适应滑模控制方法。该方法利用RBF逼近姿态控制系统中的未建模动态,通过设计的自适应律实时调整神经网络权值,实现对模型误差和外部干扰的有效补偿。同时,基于Lyapunov稳定性理论设计了固定翼无人机的纵向姿态滑模控制律,确保闭环系统的全局稳定性和有限时间收敛特性。仿真结果表明,与传统PID控制及滑模控制方法相比,本文方法在存在参数摄动和外部干扰的情况下,能够显著提高固定翼无人机纵向姿态控制系统的跟踪精度和鲁棒性能。