期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于聚焦线性注意力Retinexformer的TEDS图像实时暗光增强方法研究
1
作者
王登飞
苏宏升
+2 位作者
陈光武
陈登科
赵小娟
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2024年第11期4840-4850,共11页
列车高速运行下,表面部件易产生机械损伤,影响列车的安全运行。用于损伤检测的动车组运行故障图像检测系统(TEDS)需进行检测的部件形态多样、体积大小不一,且因对列车底部、夜晚进行图像采集时的暗光环境导致图像大部分区域偏暗,对比度...
列车高速运行下,表面部件易产生机械损伤,影响列车的安全运行。用于损伤检测的动车组运行故障图像检测系统(TEDS)需进行检测的部件形态多样、体积大小不一,且因对列车底部、夜晚进行图像采集时的暗光环境导致图像大部分区域偏暗,对比度低,给工作人员对故障的分析和标注带来干扰,影响检测的实时性和准确率,提出一种基于线性聚焦注意力的Retinexformer(RetinexFLAformer)网络对TEDS图像进行暗光增强。首先分析Retinexformer中进行自注意力计算的相似矩阵存在低秩的问题,采用线性聚焦注意力对网络进行改进,在保证计算复杂度不变的情况下,提高相似矩阵的秩以增加网络的特征多样性;其次增加空间一致性损失、曝光控制损失和颜色恒定损失,来抑制由于曝光不均引起的局部区域对比度下降和颜色畸变;最后在以上改进的基础上进一步调整网络结构构建FastRetinexFLAformer,以达到更快的暗光图像处理速度。研究表明,改进后的RetinexFLAformer能有效提高TEDS图片的暗光增强效果,和其他算法对比,评价指标PSNR和SSIM分别提高0.55和0.023;FastRetinexFLAformer网络参数文件只有3.34 M,可达到当前主流方法相当的处理效果,且能有效提升暗光增强速度,达到TEDS系统的实时性需求。研究成果可有效提高TEDS系统的图片质量,提高损伤识别和标注的精准度,提升工作人员的效率,更好地保障铁路的安全运行。
展开更多
关键词
动车组运行故障图像检测系统
暗光增强
Retinexformer
线性聚焦多头自注意力
空间一致性损失
在线阅读
下载PDF
职称材料
基于循环神经网络的动车组温度数据预测研究
2
作者
杨永
王瑞锋
《大连交通大学学报》
CAS
2024年第3期53-57,共5页
采用循环神经网络建立了基于CRH5A型动车组温度类数据的预测模型,对影响预测结果的影响因子、模型层数及神经元个数进行了明确的界定,对CRH5A型动车组实车开展持续性追踪分析,采集动车组运行真实数据,进行积累和培养。在利用神经网络预...
采用循环神经网络建立了基于CRH5A型动车组温度类数据的预测模型,对影响预测结果的影响因子、模型层数及神经元个数进行了明确的界定,对CRH5A型动车组实车开展持续性追踪分析,采集动车组运行真实数据,进行积累和培养。在利用神经网络预测模型对数据进行训练后,CRH5A型动车组变压器温度峰值预测模型精度可达94.2%,牵引电机温度峰值预测模型精度可达93.8%,齿轮箱温度峰值预测模型精度可达95.3%,轴箱温度峰值预测模型精度可达92.7%。动车组温度数据预测结果的精确度可满足实际应用需求,预测模型在提高列车检修效率、节支降耗方面有着重要的作用。
展开更多
关键词
循环神经网络
动车组
温度数据
预测模型
在线阅读
下载PDF
职称材料
题名
基于聚焦线性注意力Retinexformer的TEDS图像实时暗光增强方法研究
1
作者
王登飞
苏宏升
陈光武
陈登科
赵小娟
机构
兰州交通大学自动化与电气工程学院
甘肃省高原交通信息工程及控制重点实验室
中国铁路呼和浩特局集团公司包头车辆段
出处
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2024年第11期4840-4850,共11页
基金
国铁集团科技计划项目(N2023G064)
甘肃省科技计划资助项目(21ZD4WA018,23JRRA1693)。
文摘
列车高速运行下,表面部件易产生机械损伤,影响列车的安全运行。用于损伤检测的动车组运行故障图像检测系统(TEDS)需进行检测的部件形态多样、体积大小不一,且因对列车底部、夜晚进行图像采集时的暗光环境导致图像大部分区域偏暗,对比度低,给工作人员对故障的分析和标注带来干扰,影响检测的实时性和准确率,提出一种基于线性聚焦注意力的Retinexformer(RetinexFLAformer)网络对TEDS图像进行暗光增强。首先分析Retinexformer中进行自注意力计算的相似矩阵存在低秩的问题,采用线性聚焦注意力对网络进行改进,在保证计算复杂度不变的情况下,提高相似矩阵的秩以增加网络的特征多样性;其次增加空间一致性损失、曝光控制损失和颜色恒定损失,来抑制由于曝光不均引起的局部区域对比度下降和颜色畸变;最后在以上改进的基础上进一步调整网络结构构建FastRetinexFLAformer,以达到更快的暗光图像处理速度。研究表明,改进后的RetinexFLAformer能有效提高TEDS图片的暗光增强效果,和其他算法对比,评价指标PSNR和SSIM分别提高0.55和0.023;FastRetinexFLAformer网络参数文件只有3.34 M,可达到当前主流方法相当的处理效果,且能有效提升暗光增强速度,达到TEDS系统的实时性需求。研究成果可有效提高TEDS系统的图片质量,提高损伤识别和标注的精准度,提升工作人员的效率,更好地保障铁路的安全运行。
关键词
动车组运行故障图像检测系统
暗光增强
Retinexformer
线性聚焦多头自注意力
空间一致性损失
Keywords
trouble of moving electric multiple units detection system(TEDS)
dim light enhancement
Retinexformer
linear focused multi-head self attention
spatial consistency loss
分类号
U279.3 [机械工程—车辆工程]
在线阅读
下载PDF
职称材料
题名
基于循环神经网络的动车组温度数据预测研究
2
作者
杨永
王瑞锋
机构
蒙冀
铁路
有限责任
公司
中国铁路呼和浩特局集团公司包头车辆段
出处
《大连交通大学学报》
CAS
2024年第3期53-57,共5页
基金
中国国家铁路集团有限公司重大课题(K2021J009)。
文摘
采用循环神经网络建立了基于CRH5A型动车组温度类数据的预测模型,对影响预测结果的影响因子、模型层数及神经元个数进行了明确的界定,对CRH5A型动车组实车开展持续性追踪分析,采集动车组运行真实数据,进行积累和培养。在利用神经网络预测模型对数据进行训练后,CRH5A型动车组变压器温度峰值预测模型精度可达94.2%,牵引电机温度峰值预测模型精度可达93.8%,齿轮箱温度峰值预测模型精度可达95.3%,轴箱温度峰值预测模型精度可达92.7%。动车组温度数据预测结果的精确度可满足实际应用需求,预测模型在提高列车检修效率、节支降耗方面有着重要的作用。
关键词
循环神经网络
动车组
温度数据
预测模型
Keywords
cyclic neural network
EMU
temperature data
prediction model
分类号
U266 [机械工程—车辆工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于聚焦线性注意力Retinexformer的TEDS图像实时暗光增强方法研究
王登飞
苏宏升
陈光武
陈登科
赵小娟
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
2
基于循环神经网络的动车组温度数据预测研究
杨永
王瑞锋
《大连交通大学学报》
CAS
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部