期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于互信息自适应的多模态实体对齐方法 被引量:1
1
作者 高永杰 党建武 +1 位作者 张希权 郑爱国 《计算机应用研究》 北大核心 2025年第1期106-110,共5页
多模态实体对齐是知识融合过程中的关键一步,但异构的多模态知识图谱拥有较大的结构差异性,并且其多模态信息存在不完全性,利用当前的多模态实体对齐方法无法取得较好的对齐效果。针对上述问题,提出了基于互信息自适应的多模态实体对齐... 多模态实体对齐是知识融合过程中的关键一步,但异构的多模态知识图谱拥有较大的结构差异性,并且其多模态信息存在不完全性,利用当前的多模态实体对齐方法无法取得较好的对齐效果。针对上述问题,提出了基于互信息自适应的多模态实体对齐方法。一方面通过设计自适应融合机制来减小模态差异以及依据模态信息的贡献程度动态分配权重,另一方面引入互信息作为附加特征来强化实体的特征表示,最后利用实体相似度计算来进行实体对齐。实验表明,在5个通用的数据集上,MAMEA相较于当前基线模型,指标hits@1最大可提升1.8%,最小可提升1.4%,指标MRR最大可提升1.4%,最小可提升0.8%,证明了该模型可有效地提升多模态实体对齐的效果。 展开更多
关键词 多模态知识图谱 实体对齐 自适应特征融合 对比表示学习 互信息
在线阅读 下载PDF
基于双偏好矩阵的B2B智能推荐研究与实践 被引量:3
2
作者 王普 张朝霞 +1 位作者 吴艳华 赵正阳 《铁道学报》 EI CAS CSCD 北大核心 2019年第4期16-24,共9页
B2B电商平台的用户都具有企业特征,传统的协同过滤算法以用户-商品偏好矩阵为主,难以体现用户的企业特征。在传统协同过滤算法的基础上增加企业-类别矩阵,改进形成双偏好矩阵协同过滤算法,搭建具有企业数据特征的B2B电商平台智能推荐引... B2B电商平台的用户都具有企业特征,传统的协同过滤算法以用户-商品偏好矩阵为主,难以体现用户的企业特征。在传统协同过滤算法的基础上增加企业-类别矩阵,改进形成双偏好矩阵协同过滤算法,搭建具有企业数据特征的B2B电商平台智能推荐引擎,应用于电商大数据分析平台,并在铁路某电商平台上进行实践应用,算法响应时间为毫秒级。为了证明算法的实用性,分别在准确率、召回率、覆盖率、新颖度等方面与传统的协同过滤算法、KNN算法进行对比,均具有优势,尤其是在不活跃用户的准确性方面提升超过10%。 展开更多
关键词 B2B平台 智能推荐 双偏好矩阵 协同过滤算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部