以两组棉制品为研究对象,利用遗传算法提取有效近红外光谱信息,采用偏最小二乘法(partial least squares,简称PLS)建立了棉制品中含棉量的近红外定量的校正模型,讨论了遗传算法提取有用信息的具体应用方法.结果表明:棉制样品的近红外光...以两组棉制品为研究对象,利用遗传算法提取有效近红外光谱信息,采用偏最小二乘法(partial least squares,简称PLS)建立了棉制品中含棉量的近红外定量的校正模型,讨论了遗传算法提取有用信息的具体应用方法.结果表明:棉制样品的近红外光谱经过遗传算法提取有用信息(波长优选)后,通过一定数据预处理方法,运用PLS建立的定量校正模型,可以大大降低数据运算量,为近红外光谱分析技术应用于棉制品中含棉量的预测,提供了理论依据和实用方法.展开更多
极限学习机的相异性集成算法(Dissimilarity Based Ensemble of Extreme Learning Machine,D-ELM)在基因表达数据分类中能够得到较稳定的分类效果,然而这种分类算法是基于分类精度的,当所给样本的误分类代价不相等时,不能直接实现代价...极限学习机的相异性集成算法(Dissimilarity Based Ensemble of Extreme Learning Machine,D-ELM)在基因表达数据分类中能够得到较稳定的分类效果,然而这种分类算法是基于分类精度的,当所给样本的误分类代价不相等时,不能直接实现代价敏感分类过程中的最小平均误分类代价的要求。通过在分类过程中引入概率估计以及误分类代价和拒识代价重新构造分类结果,提出了基于相异性集成极限学习机的代价敏感算法(CS-D-ELM)。该算法被运用到基因表达数据集上,得到了较好的分类效果。展开更多
文摘以两组棉制品为研究对象,利用遗传算法提取有效近红外光谱信息,采用偏最小二乘法(partial least squares,简称PLS)建立了棉制品中含棉量的近红外定量的校正模型,讨论了遗传算法提取有用信息的具体应用方法.结果表明:棉制样品的近红外光谱经过遗传算法提取有用信息(波长优选)后,通过一定数据预处理方法,运用PLS建立的定量校正模型,可以大大降低数据运算量,为近红外光谱分析技术应用于棉制品中含棉量的预测,提供了理论依据和实用方法.
文摘极限学习机的相异性集成算法(Dissimilarity Based Ensemble of Extreme Learning Machine,D-ELM)在基因表达数据分类中能够得到较稳定的分类效果,然而这种分类算法是基于分类精度的,当所给样本的误分类代价不相等时,不能直接实现代价敏感分类过程中的最小平均误分类代价的要求。通过在分类过程中引入概率估计以及误分类代价和拒识代价重新构造分类结果,提出了基于相异性集成极限学习机的代价敏感算法(CS-D-ELM)。该算法被运用到基因表达数据集上,得到了较好的分类效果。