期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于四通道卷积稀疏编码的图像超分辨率重建方法 被引量:2
1
作者 陈晨 赵建伟 曹飞龙 《计算机应用》 CSCD 北大核心 2018年第6期1777-1783,共7页
针对图像分辨率较低的问题,提出了一种基于四通道卷积稀疏编码的图像超分辨率重建方法。首先,该方法将输入图像依次翻转90°作为四通道的各自输入,通过低通滤波和梯度算子将输入图像分解成高频和低频部分;接着,分别利用卷积稀疏编... 针对图像分辨率较低的问题,提出了一种基于四通道卷积稀疏编码的图像超分辨率重建方法。首先,该方法将输入图像依次翻转90°作为四通道的各自输入,通过低通滤波和梯度算子将输入图像分解成高频和低频部分;接着,分别利用卷积稀疏编码方法和三次插值方法对各通道低分辨率图像的高频部分和低频部分进行重建;最后,对四通道输出图像加权求均值获得重建的高分辨率图像。实验结果表明,所提方法比一些经典的超分辨率重建方法在峰值信噪比(PSNR)、结构相似度(SSIM)和抗噪性上具有更好的重建效果。所提方法不仅克服了重叠补丁破环图像补丁间一致性的缺陷,还提高了重建图像的细节轮廓,加强了重建图像的稳定性。 展开更多
关键词 图像重建 超分辨率 卷积稀疏编码 四通道 稳定性
在线阅读 下载PDF
双层可变形卷积网络的超分辨率图像重建 被引量:7
2
作者 黄陶冶 赵建伟 周正华 《计算机应用》 CSCD 北大核心 2019年第S02期68-74,共7页
针对目前大多数基于深度学习的图像超分辨率重建方法都不考虑尺度与几何变化的问题,提出基于双层可变形卷积网络的超分辨率图像重建方法。首先,该方法将标准的卷积层替换为可变形卷积层,模拟图像中的简单几何变化过程;其次,利用两个不... 针对目前大多数基于深度学习的图像超分辨率重建方法都不考虑尺度与几何变化的问题,提出基于双层可变形卷积网络的超分辨率图像重建方法。首先,该方法将标准的卷积层替换为可变形卷积层,模拟图像中的简单几何变化过程;其次,利用两个不同尺寸的可变形卷积层构造双层可变形卷积单元,来提取图像在不同尺度下的特征信息;最后,在特征图之间增加残差连接,缓解梯度消失带来的训练难度。实验结果说明该方法比现有的一些重建方法能更好地提取图像的特征信息,提高图像的重建效果。 展开更多
关键词 超分辨率重建 双层可变形卷积 残差学习 几何变化 多尺度
在线阅读 下载PDF
基于空间元学习的放大任意倍的超分辨率重建方法 被引量:2
3
作者 孙忠凡 周正华 赵建伟 《计算机应用》 CSCD 北大核心 2020年第12期3471-3477,共7页
针对现有的基于深度学习的超分辨率重建方法主要研究放大整数倍的重建,对放大任意倍(如非整数倍)重建情况讨论较少的问题,提出一种基于空间元学习的放大任意倍的超分辨率重建方法。首先,利用坐标投影找出高分辨率图像与低分辨率图像坐... 针对现有的基于深度学习的超分辨率重建方法主要研究放大整数倍的重建,对放大任意倍(如非整数倍)重建情况讨论较少的问题,提出一种基于空间元学习的放大任意倍的超分辨率重建方法。首先,利用坐标投影找出高分辨率图像与低分辨率图像坐标间的对应关系;其次,在元学习网络的基础上,考虑特征图的空间信息,将提取到的空间特征与坐标位置相结合作为权值预测网络的输入;最后,将权值预测网络预测出的卷积核与特征图结合,从而有效地放大特征图的尺寸,得到放大任意倍的高分辨率图像。所提的空间元学习模块可以与其他深度网络相结合,得到放大任意倍的超分辨率图像重建方法。所提的放大任意倍(非整数倍)超分辨率重建方法解决了实际生活中放大尺寸固定且非整数倍的重建问题。实验结果表明,所提的重建方法在空间复杂度(网络参数)相当的情况下,时间复杂度(计算量)是其他重建方法的25%~50%,且峰值信噪比(PSNR)比其他一些方法提高了0.01~5 dB,结构相似度(SSIM)提高了0.03~0.11。 展开更多
关键词 超分辨率 深度学习 空间元学习 残差密集模块 权值预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部