期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于MRE-PointNet+AE的绿萝叶片外形参数估测算法 被引量:8
1
作者 王浩云 肖海鸿 +3 位作者 马仕航 陈玲 王江波 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2021年第1期146-153,共8页
为了准确、高效、自动获取植物叶片外形参数,提出一种基于多分辨率编码点云深度学习网络(MRE-PointNet)和自编码器模型的绿萝叶片外形参数估测算法。使用Kinect V2相机以垂直姿态获取绿萝叶片点云数据,采用直通滤波、分割、点云精简算... 为了准确、高效、自动获取植物叶片外形参数,提出一种基于多分辨率编码点云深度学习网络(MRE-PointNet)和自编码器模型的绿萝叶片外形参数估测算法。使用Kinect V2相机以垂直姿态获取绿萝叶片点云数据,采用直通滤波、分割、点云精简算法对数据进行预处理,通过测定的叶片外形参数反演绿萝叶片几何模型,并计算几何模型的叶长、叶宽、叶面积。将不同参数组合构建的几何模型离散成点云数据输入MRE-PointNet网络,得到几何模型叶片外形参数估测的预训练模型。针对拍摄过程中存在的叶片部分遮挡和噪声问题,采用自编码器网络对点云数据进行二次处理,以几何模型离散的点云数据作为输入,经过编码解码运算得到自编码器的预训练模型,提升了MRE-PointNet网络在遮挡情况下对叶片外形参数估测的鲁棒性。试验共采集300片绿萝叶片点云数据,按照2∶1比例进行划分,以其中200片点云数据作为训练集,对预训练模型MRE-PointNet做模型迁移的参数微调,以剩下的100片点云数据作为测试集,评估模型对绿萝叶片外形参数的估测能力。采用本文算法将外形参数估测值和真实值进行数学统计与线性回归分析,得出叶长、叶宽和叶面积估测的R^2和RMSE分别为0.9005和0.4170 cm、0.9131和0.3164 cm、0.9447和3.8834 cm^2。试验表明,基于MRE-PointNet和自编码器模型的绿萝叶片外形参数估测算法具有较高的精确度和实用性。 展开更多
关键词 绿萝 叶片外形参数估测 多分辨率编码 模型迁移 深度学习 自编码器
在线阅读 下载PDF
利用FL-DGCNN模型估测绿萝叶片外部表型参数 被引量:4
2
作者 陈玲 王浩云 +3 位作者 肖海鸿 马仕航 杨瑶 徐焕良 《农业工程学报》 EI CAS CSCD 北大核心 2021年第13期172-179,共8页
为了能够低成本、自动化批量获取植物叶片的外部表型参数,同时解决自然生长条件下的植物叶片存在遮挡而无法获取完整的外部表型数据的问题,该研究以绿萝叶片为研究对象,基于曲面参数方程建立叶片几何模型,提出一种基于特征分层的动态图(... 为了能够低成本、自动化批量获取植物叶片的外部表型参数,同时解决自然生长条件下的植物叶片存在遮挡而无法获取完整的外部表型数据的问题,该研究以绿萝叶片为研究对象,基于曲面参数方程建立叶片几何模型,提出一种基于特征分层的动态图(Dynamic Graph CNN based on Feature Layering,FL-DGCNN)和堆栈编码器模型的绿萝叶片外部表型参数估测算法。通过多层组合的编码-解码器模型对残缺点云进行形状补全,将不同尺度下的点云通过多层感知机提取分组点不同层的特征向量融合后获取特征信息,以决定系数和均方根误差评价模型结果。结果表明:多层组合的编码模型对残缺点云补全的鲁棒性更高,特征分层的动态图模型估测结果的叶长、叶宽、叶面积的决定系数分别为0.92、0.93和0.94,叶长、叶宽的均方根误差分别为0.37、0.34cm,叶面积的均方根误差为3.01cm^(2)。该方法对叶类植物叶片的外部表型参数估测效果较好,具有实用性。 展开更多
关键词 模型 参数 三维 深度学习 遮挡补全 绿萝
在线阅读 下载PDF
遮挡条件下基于MSF-PPD网络的绿萝叶片点云补全方法 被引量:4
3
作者 肖海鸿 徐焕良 +3 位作者 马仕航 陈玲 王江波 王浩云 《农业机械学报》 EI CAS CSCD 北大核心 2021年第9期141-148,共8页
针对在自然场景中,由于遮挡、视角限制和操作不当等问题,导致传感器获取的植物或器官点云不完整,提出了一种基于多尺度特征提取模块结合点云金字塔解码器(Multi-scale feature extraction model with point cloud pyramid decoder,MSF-P... 针对在自然场景中,由于遮挡、视角限制和操作不当等问题,导致传感器获取的植物或器官点云不完整,提出了一种基于多尺度特征提取模块结合点云金字塔解码器(Multi-scale feature extraction model with point cloud pyramid decoder,MSF-PPD)的叶片形状补全网络。首先,采用多尺度特征提取模块实现不同维度特征信息的全局提取和融合,其次,通过点云金字塔解码器进行叶片点云的多阶段生成补全,最终得到完整的目标叶片形状。使用曲面参数方程构建绿萝叶片仿真模型库,并将其离散成点云作为网络模型训练的训练集和验证集,使用Kinect v2相机获取绿萝叶片点云作为网络模型补全性能评估的测试集。试验结果表明,本文网络结构对叶片点云补全的效果理想,证明本文方法能够对遮挡情况下的绿萝叶片进行高效、完整的补全。 展开更多
关键词 绿萝叶片 遮挡 点云 生成补全 金字塔解码器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部