期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
IR-GCN:二值图卷积神经网络推理加速器
1
作者 于启航 文渊博 杜子东 《高技术通讯》 CAS 北大核心 2024年第10期1024-1035,共12页
针对图卷积神经网络(GCN)中数据规模庞大、不适合边缘端低功耗处理器高效推理计算的问题,本文提出一种将新型二值数据量化算法(IR-Net)应用于GCN模型推理计算的方法,并设计了对应的硬件加速器IR-GCN。同时,针对计算过程中工作负载分布... 针对图卷积神经网络(GCN)中数据规模庞大、不适合边缘端低功耗处理器高效推理计算的问题,本文提出一种将新型二值数据量化算法(IR-Net)应用于GCN模型推理计算的方法,并设计了对应的硬件加速器IR-GCN。同时,针对计算过程中工作负载分布不均衡的问题,实现了一种负载均衡模块设计,显著提高了计算效率。实验结果表明,在较小精度损失范围内,IR-GCN加速器可以同时降低计算延迟以及访存开销。与现有性能最优的研究相比,IR-GCN加速器平均具有2.4倍的计算加速比、7.9倍的功耗降低、13.7倍的芯片面积减少以及21.0倍的访存量降低。 展开更多
关键词 图卷积神经网络(GCN) 二值神经网络(BNN) 硬件加速器
在线阅读 下载PDF
Bi-SCNN:二值随机混合神经网络加速器
2
作者 于启航 文渊博 杜子东 《高技术通讯》 北大核心 2024年第12期1243-1255,共13页
二值神经网络(BNN)具有硬件友好的特性,但为了保证计算精度,在输入层仍需要使用浮点或定点计算,增加了硬件开销。针对该问题,本文将另一种同样具有硬件友好特性的随机计算方法应用于BNN,实现了BNN输入层的高效计算,并设计了二值随机混... 二值神经网络(BNN)具有硬件友好的特性,但为了保证计算精度,在输入层仍需要使用浮点或定点计算,增加了硬件开销。针对该问题,本文将另一种同样具有硬件友好特性的随机计算方法应用于BNN,实现了BNN输入层的高效计算,并设计了二值随机混合计算架构Bi-SCNN。首先,在BNN输入层使用高精度的随机运算单元,实现了与定点计算近似的精度;其次,通过在处理单元(PE)内和PE间2个层次对随机数生成器进行复用,并优化运算单元,有效降低了硬件开销;最后,根据输入数据的特性对权值配置方式进行优化,进而降低了整体计算延迟。相比于现有性能最优的BNN加速器,Bi-SCNN在保证计算精度的前提下,实现了2.4倍的吞吐量、12.6倍的能效比和2.2倍的面积效率提升,分别达到2.2 TOPS、7.3 TOPS·W^(-1)和1.8 TOPS·mm^(-2)。 展开更多
关键词 二值神经网络(BNN) 随机计算(SC) 神经网络加速器
在线阅读 下载PDF
深度卷积的软硬件协同优化设计与实现
3
作者 齐豪 刘少礼 李威 《高技术通讯》 CAS 2022年第7期696-707,共12页
近年来,深度学习技术被广泛应用。由于移动设备同时受到算力和功耗的限制,很多轻量级的网络被提出,比如Xception、MobileNet系列等。在这些轻量级网络中,深度卷积的层数占网络中所有卷积层数的31%~50%,故如何优化深度卷积的运算是一个... 近年来,深度学习技术被广泛应用。由于移动设备同时受到算力和功耗的限制,很多轻量级的网络被提出,比如Xception、MobileNet系列等。在这些轻量级网络中,深度卷积的层数占网络中所有卷积层数的31%~50%,故如何优化深度卷积的运算是一个值得研究的问题。通用中央处理器(CPU)、固定运算器长度的单指令多数据流(SIMD)处理器均无法高效处理神经网络中的各种规模的深度卷积,性能较低。针对这一问题,本文提出了一种软硬件结合的方法优化深度卷积的计算,通过一个多种权值传输模式的硬件架构设计,结合软件模式选择、数据拆分等优化方式,在提高运算效率的同时减少了访存量。实验结果表明,使用该方法实现的深度卷积加速器,相比通用CPU最大可达9.3倍的性能加速,相比运算器长度为64的单核SIMD处理器最大可达29.3倍的性能加速。 展开更多
关键词 神经网络 深度卷积 加速器 软硬件协同优化 计算效率
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部