高低轨卫星联合覆盖系统中低轨卫星部署必须无条件规避对高轨卫星的干扰。已有研究采用基于隔离角的空域隔离多波束资源分配,或不满足国际电联的干扰规避要求,或会造成低轨卫星系统服务质量下降。针对以上问题,提出一种高低轨卫星联合...高低轨卫星联合覆盖系统中低轨卫星部署必须无条件规避对高轨卫星的干扰。已有研究采用基于隔离角的空域隔离多波束资源分配,或不满足国际电联的干扰规避要求,或会造成低轨卫星系统服务质量下降。针对以上问题,提出一种高低轨卫星联合覆盖的干扰规避多波束资源分配机制,以等效功率通量密度(Equivalent Power Flux Density,EPFD)为干扰规避约束,以最大化波位服务满意度(Beam Service Satisfaction,BSS)为目标,构建高低轨卫星联合覆盖多波束资源分配优化问题模型,并提出一种联合粒子群和遗传算法的求解算法(BSS Beam Hopping Interference Avoidance with PSO and GA,BBHIA-PG)。在系统忙时和闲时,分别与基于隔离角的联合迭代多星跳波束算法(Joint Iterative Multi-Satellite Beam Hopping,JIMS-BH)和负载均衡及功率控制多星跳波束算法(Load Balancing and Energy-Efficient Beam Hopping,LB-EE-BH)对比。仿真结果表明:基于所选取业务模型,系统最忙时,文中算法较负载均衡及功率控制和多星跳波束算法均满足等效功率通量密度门限要求;波位服务满意度方面,文中算法较负载均衡及功率控制多星跳波束算法提升7.43%,较基于隔离角的联合迭代多星跳波束算法降低3.31%;波位总吞吐量文中算法较负载均衡及功率控制多星跳波束算法提升11.91%,较基于隔离角的联合迭代多星跳波束算法提升2.99%。系统最闲时,3种算法波位服务满意度和波位总吞吐量性能一致,但隔离角的联合迭代多星跳波束资源分配算法不满足等效功率能量密度门限要求。展开更多
The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for thre...The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3.展开更多
文摘高低轨卫星联合覆盖系统中低轨卫星部署必须无条件规避对高轨卫星的干扰。已有研究采用基于隔离角的空域隔离多波束资源分配,或不满足国际电联的干扰规避要求,或会造成低轨卫星系统服务质量下降。针对以上问题,提出一种高低轨卫星联合覆盖的干扰规避多波束资源分配机制,以等效功率通量密度(Equivalent Power Flux Density,EPFD)为干扰规避约束,以最大化波位服务满意度(Beam Service Satisfaction,BSS)为目标,构建高低轨卫星联合覆盖多波束资源分配优化问题模型,并提出一种联合粒子群和遗传算法的求解算法(BSS Beam Hopping Interference Avoidance with PSO and GA,BBHIA-PG)。在系统忙时和闲时,分别与基于隔离角的联合迭代多星跳波束算法(Joint Iterative Multi-Satellite Beam Hopping,JIMS-BH)和负载均衡及功率控制多星跳波束算法(Load Balancing and Energy-Efficient Beam Hopping,LB-EE-BH)对比。仿真结果表明:基于所选取业务模型,系统最忙时,文中算法较负载均衡及功率控制和多星跳波束算法均满足等效功率通量密度门限要求;波位服务满意度方面,文中算法较负载均衡及功率控制多星跳波束算法提升7.43%,较基于隔离角的联合迭代多星跳波束算法降低3.31%;波位总吞吐量文中算法较负载均衡及功率控制多星跳波束算法提升11.91%,较基于隔离角的联合迭代多星跳波束算法提升2.99%。系统最闲时,3种算法波位服务满意度和波位总吞吐量性能一致,但隔离角的联合迭代多星跳波束资源分配算法不满足等效功率能量密度门限要求。
基金State Key Lab of Processors,Institute of Computing Technology,Chinese Academy of Sciences(CLQ202516)the Fundamental Research Funds for the Central Universities of China(3282025047,3282024051,3282024009)。
文摘The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3.