期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
进展期胃癌生存预测:基于增强CT深度学习模型的构建 被引量:5
1
作者 张文娟 张利文 +3 位作者 邓娟 任铁柱 徐敏 周俊林 《放射学实践》 CSCD 北大核心 2024年第4期488-495,共8页
目的:探讨基于术前增强CT构建的深度学习(DL)模型对进展期胃癌(AGC)1、2、3年生存概率的预测价值。方法:回顾性分析2013年1月-2015年12月在本院经病理证实为AGC的337例患者的临床和CT资料。按照7:3的比例将患者随机分为训练集(n=237)和... 目的:探讨基于术前增强CT构建的深度学习(DL)模型对进展期胃癌(AGC)1、2、3年生存概率的预测价值。方法:回顾性分析2013年1月-2015年12月在本院经病理证实为AGC的337例患者的临床和CT资料。按照7:3的比例将患者随机分为训练集(n=237)和验证集(n=100)。采用数据增强技术增加训练集的数据量,随后基于术前CT增强静脉期图像构建残差卷积神经网络结构的DL模型,预测AGC患者1、2、3年的生存概率。经Cox单因素及多因素分析构建临床模型,然后联合DL模型和临床模型构建综合模型并绘制其诺莫图。计算各模型的Harrel一致性指数(C-index)和风险比(HR),并应用Kaplan-Meier曲线、校准曲线及临床决策曲线比较3种模型对OS的预测效能。结果:在训练集和验证集中,临床模型、DL模型和综合模型的C-index值分别为0.70(95%CI:0.65~0.75)、0.72(95%CI:0.67~0.76)、0.74(95%CI:0.69~0.78)和0.64(95%CI:0.56~0.71)、0.66(95%CI:0.58~0.73)、0.67(95%CI:0.59~0.74),表明综合模型具有最优的生存期预测能力;三个模型的HR分别为2.72(95%CI:2.06~4.02)、2.88(95%CI:1.89~4.39)、2.72(95%CI:2.13~3.49)和2.11(95%CI:1.43~3.11)、4.32(95%CI:1.66~11.24)、1.89(95%CI:1.36~2.60),均以DL模型的HR最高,表明DL模型预测的高危人群具有更高的死亡风险。校准曲线分析显示基于综合模型的诺莫图预测AGC患者1、2、3年生存概率与实际的预后随访结果具有较高的一致性。临床决策曲线显示综合模型的净收益优于其它2种模型。结论:基于CT增强静脉期图像利用残差卷积神经网络构建的DL模型是一种良好的AGC患者生存风险评估模型,对AGC患者生存期的早期预判具有较高的临床应用价值。 展开更多
关键词 进展期胃癌 体层摄影术 X线计算机 残差卷积神经网 深度学习 预后
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部