期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于散射信息和元学习的SAR图像飞机目标识别 被引量:10
1
作者 吕艺璇 王智睿 +5 位作者 王佩瑾 李盛阳 谭洪 陈凯强 赵良瑾 孙显 《雷达学报(中英文)》 EI CSCD 北大核心 2022年第4期652-665,共14页
SAR图像由于数据获取难度大,样本标注难,目标覆盖率不足,导致包含地理空间目标的影像数量稀少。为了解决这些问题,该文开展了基于散射信息和元学习的SAR图像飞机目标识别方法研究。针对SAR图像中不同型号飞机空间结构离散分布差异较大... SAR图像由于数据获取难度大,样本标注难,目标覆盖率不足,导致包含地理空间目标的影像数量稀少。为了解决这些问题,该文开展了基于散射信息和元学习的SAR图像飞机目标识别方法研究。针对SAR图像中不同型号飞机空间结构离散分布差异较大的情况,设计散射关联分类器,对飞机目标的离散程度量化建模,通过不同目标离散分布的差异来动态调整样本对的权重,指导网络学习更具有区分性的类间特征表示。考虑到SAR目标成像易受背景噪声的影响,设计了自适应特征细化模块,促使网络更加关注飞机的关键部件区域,减少背景噪声干扰。该文方法有效地将目标散射分布特性与网络的自动学习过程相结合。实验结果表明,在5-way 1-shot的极少样本新类别识别任务上,该方法识别精度为59.90%,相比于基础方法提升了3.85%。减少一半训练数据量后,该方法在新类别的极少样本识别任务上仍然表现优异。 展开更多
关键词 合成孔径雷达(SAR) 飞机目标识别 元学习 散射信息
在线阅读 下载PDF
AIR-SARShip-1.0:高分辨率SAR舰船检测数据集 被引量:77
2
作者 孙显 王智睿 +3 位作者 孙元睿 刁文辉 张跃 付琨 《雷达学报(中英文)》 CSCD 北大核心 2019年第6期852-862,共11页
近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR... 近年来,深度学习技术得到广泛应用,然而在合成孔径雷达(SAR)舰船目标检测研究中,由于数据获取难、样本规模小,尚难以支撑深度网络模型的训练。该文公开了一个面向高分辨率、大尺寸场景的SAR舰船检测数据集,该数据集包含31景高分三号SAR图像,场景类型包含港口、岛礁、不同级别海况的海面等,背景涵盖近岸和远海等多样场景。同时,该文使用经典舰船检测算法和深度学习算法进行了实验,其中基于密集连接端到端网络方法效果最佳,平均精度达到88.1%。通过实验对比分析形成指标基准,方便其他学者在此数据集基础上进一步展开SAR舰船检测相关研究。 展开更多
关键词 SAR舰船检测 公开数据集 深度学习
在线阅读 下载PDF
SAR-AIRcraft-1.0:高分辨率SAR飞机检测识别数据集 被引量:18
3
作者 王智睿 康玉卓 +3 位作者 曾璇 汪越雷 张汀 孙显 《雷达学报(中英文)》 EI CSCD 北大核心 2023年第4期906-922,共17页
针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确... 针对合成孔径雷达(SAR)图像中飞机散射点离散以及背景强干扰造成虚警的问题,该文提出了一种结合散射感知的SAR飞机检测识别方法。一方面,通过上下文引导的特征金字塔模块来增强全局信息,减弱复杂场景中强干扰的影响,提高检测识别的准确率。另一方面,利用散射关键点对目标进行定位,设计散射感知检测模块实现对回归框的细化校正,增强目标的定位精度。为了验证方法有效性、同时促进SAR飞机检测识别领域的研究发展,该文制作并公开了一个高分辨率SAR-AIRcraft-1.0数据集。该数据集图像来自高分三号卫星,包含4,368张图片和16,463个飞机目标实例,涵盖A220,A320/321,A330,ARJ21,Boeing737,Boeing787和other共7个类别。该文将提出的方法和常见深度学习算法在构建的数据集上进行实验,实验结果证明了散射感知方法的优异性能,并且形成了该数据集在SAR飞机检测、细粒度识别、检测识别一体化等不同任务中性能指标的基准。 展开更多
关键词 合成孔径雷达 公开数据集 SAR飞机检测 飞机识别 深度学习
在线阅读 下载PDF
基于丰度分布约束的NMF端元生成方法 被引量:2
4
作者 石悦 王宏琦 郭新毅 《中国科学院大学学报(中英文)》 CSCD 北大核心 2020年第4期547-552,共6页
非负矩阵分解(non-negative matrix factorization,NMF)端元生成方法可以同时获得端元和丰度,且支持乘式迭代实现目标函数优化,处理效率高,因此受到越来越多的关注。由于目标函数非凸,基于NMF的端元提取方法容易陷入局部极值。尽管采用... 非负矩阵分解(non-negative matrix factorization,NMF)端元生成方法可以同时获得端元和丰度,且支持乘式迭代实现目标函数优化,处理效率高,因此受到越来越多的关注。由于目标函数非凸,基于NMF的端元提取方法容易陷入局部极值。尽管采用增加约束的方式可以缓解局部极值问题,但往往会破坏NMF乘式迭代规则,从而降低NMF方法的处理效率。提出一种基于丰度分布约束的方法,利用矩阵迹运算实现目标函数乘式迭代优化。实验结果表明,该方法既能估计出准确的端元,又能提高端元生成的效率。 展开更多
关键词 高光谱 端元生成 非负矩阵分解(NMF) 丰度分布约束
在线阅读 下载PDF
基于监督对比学习正则化的高分辨率SAR图像建筑物提取方法 被引量:6
5
作者 康健 王智睿 +1 位作者 祝若鑫 孙显 《雷达学报(中英文)》 CSCD 北大核心 2022年第1期157-167,共11页
近年来,高分辨合成孔径雷达(SAR)图像的智能解译技术在城市规划、变化监测等方面得到了广泛应用。不同于光学图像,SAR图像的获取方式、图像中目标的几何结构等因素制约了现有深度学习方法对SAR图像地物目标的解译效果。该文针对高分辨SA... 近年来,高分辨合成孔径雷达(SAR)图像的智能解译技术在城市规划、变化监测等方面得到了广泛应用。不同于光学图像,SAR图像的获取方式、图像中目标的几何结构等因素制约了现有深度学习方法对SAR图像地物目标的解译效果。该文针对高分辨SAR图像城市区域建筑物提取,提出了基于监督对比学习的正则化方法,其主要思想是增强同一类别像素在特征空间中的相似性以及不同类别像素之间的差异性,使得深度学习模型能更加关注SAR图像中建筑物与非建筑物区域在特征空间中的区别,从而提升建筑物识别精度。利用公开的大场景SpaceNet6数据集,通过对比实验,提出的正则化方法,其建筑物提取精度相比于常用的分割方法在不同网络结构下至少提升1%,分割结果证明了该文方法在实际数据上的有效性,可以对复杂场景下的城市建筑物区域进行有效分割。此外,该方法也可以拓展应用于其他SAR图像像素级别的地物分割任务中。 展开更多
关键词 合成孔径雷达 SAR建筑物提取 深度学习 语义分割 对比学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部