期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型
被引量:
3
1
作者
吴思远
李泓
《储能科学与技术》
CAS
CSCD
北大核心
2024年第4期1216-1224,共9页
ChatGPT的出现意味着一种以“预训练+微调”为主的新科研范式诞生,以OpenAI为代表的企业正朝着训练通用人工智能(AGI)模型的路线前进,AGI意味着人工智能具备超越人类智力并解决通用性问题的能力,其是为了解决通用问题并具有强大的自学...
ChatGPT的出现意味着一种以“预训练+微调”为主的新科研范式诞生,以OpenAI为代表的企业正朝着训练通用人工智能(AGI)模型的路线前进,AGI意味着人工智能具备超越人类智力并解决通用性问题的能力,其是为了解决通用问题并具有强大的自学能力来促进人类社会发展。然而OpenAI等模型仍然是以文本为主结合图像等作为输入,对于电池体系来说,文本信息是少数的,更多的是温度、电压-电流曲线等的多模态数据,其所关注的结果包括电池荷电态、电池健康度、剩余寿命和是否出现电池性能跳水的拐点,甚至包括无数据情况下电池二次(梯度)利用的健康度评估。这意味着ChatGPT的路线虽然也可能解决电池体系的问题,但是以文本为主的样式或许有些“杀鸡用牛刀”,即使未来OpenAI的AGI可能解决当前电池存在的问题,但是在模型参数和输入方面与电池本质不符会使得模型参数量巨大而不适合电池离线端评估。对于电池体系的AGI,应该有自己独特的“文本语言”即理解电池运行过程中所发生的一切物理、化学过程以及其之间的关联,从而实现通用性并为后续全固态电池量产上车做铺垫。本文展望了在电池体系发展AGI过程中应该重新设计模型架构,特别在特征表示、数据结构设计、预训练方法、预训练过程设计和实际任务微调等需要重新设计。此外,相较于运行在服务器端的大模型,发展低参数量特别是离线的模型对于实时预测和基于我国国情及国际形势发展是十分必要的。本文主要讨论了发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型所需要经历的几个阶段、可能面临的困难和评价指标,同时给出中国科学院物理研究所(以下简称物理所)在电池大模型在预训练、微调和测评三个方面“三步走”计划中的规划和可能线路。
展开更多
关键词
多模态
通用人工智能
电池状态
语义检测
预训练
在线阅读
下载PDF
职称材料
题名
发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型
被引量:
3
1
作者
吴思远
李泓
机构
中国科学院物理研究所北京清洁能源前沿研究中心
中国科学院物理研究所
凝聚态物质
科学
数据
中心
出处
《储能科学与技术》
CAS
CSCD
北大核心
2024年第4期1216-1224,共9页
文摘
ChatGPT的出现意味着一种以“预训练+微调”为主的新科研范式诞生,以OpenAI为代表的企业正朝着训练通用人工智能(AGI)模型的路线前进,AGI意味着人工智能具备超越人类智力并解决通用性问题的能力,其是为了解决通用问题并具有强大的自学能力来促进人类社会发展。然而OpenAI等模型仍然是以文本为主结合图像等作为输入,对于电池体系来说,文本信息是少数的,更多的是温度、电压-电流曲线等的多模态数据,其所关注的结果包括电池荷电态、电池健康度、剩余寿命和是否出现电池性能跳水的拐点,甚至包括无数据情况下电池二次(梯度)利用的健康度评估。这意味着ChatGPT的路线虽然也可能解决电池体系的问题,但是以文本为主的样式或许有些“杀鸡用牛刀”,即使未来OpenAI的AGI可能解决当前电池存在的问题,但是在模型参数和输入方面与电池本质不符会使得模型参数量巨大而不适合电池离线端评估。对于电池体系的AGI,应该有自己独特的“文本语言”即理解电池运行过程中所发生的一切物理、化学过程以及其之间的关联,从而实现通用性并为后续全固态电池量产上车做铺垫。本文展望了在电池体系发展AGI过程中应该重新设计模型架构,特别在特征表示、数据结构设计、预训练方法、预训练过程设计和实际任务微调等需要重新设计。此外,相较于运行在服务器端的大模型,发展低参数量特别是离线的模型对于实时预测和基于我国国情及国际形势发展是十分必要的。本文主要讨论了发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型所需要经历的几个阶段、可能面临的困难和评价指标,同时给出中国科学院物理研究所(以下简称物理所)在电池大模型在预训练、微调和测评三个方面“三步走”计划中的规划和可能线路。
关键词
多模态
通用人工智能
电池状态
语义检测
预训练
Keywords
multimodal
artificial general intelligence
pretrained
state of battery
semantic detect
分类号
TP391.77 [自动化与计算机技术—计算机应用技术]
TP391.9 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型
吴思远
李泓
《储能科学与技术》
CAS
CSCD
北大核心
2024
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部