砾幕层是戈壁生态系统的重要组成部分,大尺度的砾幕层遥感监测对戈壁生态系统保护具有重要意义。针对砾幕层结构松散、异质性强的特点,本文提出了一种基于U-ConvHDNet语义分割的砾幕层自动信息制图方法,利用2023年8月的哈密全区域的Sent...砾幕层是戈壁生态系统的重要组成部分,大尺度的砾幕层遥感监测对戈壁生态系统保护具有重要意义。针对砾幕层结构松散、异质性强的特点,本文提出了一种基于U-ConvHDNet语义分割的砾幕层自动信息制图方法,利用2023年8月的哈密全区域的Sentinel-2影像提取戈壁砾幕层信息。结果表明,U-ConvHDNet模型的F1分数为0.918,优于参与对比的7个主流语义分割模型,消融试验表明骨架网络的改进与上下采样模块的联合使用有效提升了精度。双重感受野滑窗策略优化了拼接线附近不稳定的现象,提取出哈密戈壁砾幕层总面积为1.026×105 km 2,其信息提取精度的F1分数为0.921。本文研究可为戈壁砾幕层的监测和戈壁生态系统治理提供技术支撑。展开更多
文摘砾幕层是戈壁生态系统的重要组成部分,大尺度的砾幕层遥感监测对戈壁生态系统保护具有重要意义。针对砾幕层结构松散、异质性强的特点,本文提出了一种基于U-ConvHDNet语义分割的砾幕层自动信息制图方法,利用2023年8月的哈密全区域的Sentinel-2影像提取戈壁砾幕层信息。结果表明,U-ConvHDNet模型的F1分数为0.918,优于参与对比的7个主流语义分割模型,消融试验表明骨架网络的改进与上下采样模块的联合使用有效提升了精度。双重感受野滑窗策略优化了拼接线附近不稳定的现象,提取出哈密戈壁砾幕层总面积为1.026×105 km 2,其信息提取精度的F1分数为0.921。本文研究可为戈壁砾幕层的监测和戈壁生态系统治理提供技术支撑。