-
题名基于循环时间卷积网络的序列流推荐算法
被引量:6
- 1
-
-
作者
李太松
贺泽宇
王冰
颜永红
唐向红
-
机构
中国科学院声学研究所语言声学与内容理解重点实验室
中国科学院大学电子电气与通信工程学院
中国科学院新疆理化技术研究所新疆民族语音语言信息处理重点实验室
贵州大学现代制造技术教育部重点实验室
-
出处
《计算机科学》
CSCD
北大核心
2020年第3期103-109,共7页
-
基金
国家自然科学基金(11590770-4,11722437,61650202,U1536117,61671442,11674352,11504406,61601453)
国家重点研发计划(2016YFB0801203,2016YFC0800503,2017YFB1002803)
+1 种基金
新疆维吾尔自治区重大科技专项(2016A03007-1)
贵州省留学回国人员科技活动择优资助项目(2018.0002)~~
-
文摘
针对循环神经网络(Recurrent Neural Network,RNN)模型在序列流推荐中只能从宏观上捕捉序列的演变模式,忽略了物品(Item)间内部的微观联系,无法长程建模序列数据的变化规律的问题,提出了多维度序列建模算法循环时间卷积网络(Recurrent Temporal Convolutional Network,RTCN)。首先,将每个物品表示成定长向量,采用多层因果卷积和扩张卷积操作扩大感受野范围,建立序列元素间的长程依赖关系。利用残差连接网络提取不同层次的特征信息,解决反向传播中梯度衰减甚至消失的问题。综合设计时间卷积网络(Temporal Convolutional Network,TCN)提取序列流中前后物品间的局部特征,将物品信息映射到隐藏空间,得到细粒度的特征向量。为进一步建立元素间的宏观联系,将特征向量依次输入门限循环单元(Gated Recurrent Unit,GRU),迭代更新现有隐藏状态并预测下一时刻的输出。RTCN通过时间卷积网络,从输入序列流提取出长时间、多维度、细粒度的局部关联特征;经过门限循环网络,建模序列间的长距离依赖关系,捕捉序列元素的演变模式,并预测下一个出现的物品。利用网站、手机应用和音乐3个不同场景中的数据对模型进行了实验。实验结果显示,RTCN模型在召回率(Recall)和平均排序倒数(MRR)两个指标上比RNN模型高出6%~13%,比传统推荐算法高出9%~59%。通过对比不同的损失函数,模型在交叉熵损失函数下表现最优。此外,由于TCN中的卷积层具有多通道的结构,当数据维度丰富时,该模型对物品和用户的上下文信息具有很强的综合能力。
-
关键词
推荐系统
深度学习
序列流推荐
时间卷积网络
循环神经网络
-
Keywords
Recommendation system
Deep learning
Session-based recommendation
Temporal convolutional network
Recurrent neural network
-
分类号
TP183
[自动化与计算机技术—控制理论与控制工程]
-