In this work,we investigate the impact of the whole small recess offset on DC and RF characteristics of InP high electron mobility transistors(HEMTs).L_(g)=80 nm HEMTs are fabricated with a double-recessed gate proces...In this work,we investigate the impact of the whole small recess offset on DC and RF characteristics of InP high electron mobility transistors(HEMTs).L_(g)=80 nm HEMTs are fabricated with a double-recessed gate process.We focus on their DC and RF responses,including the maximum transconductance(g_(m_max)),ON-resistance(R_(ON)),current-gain cutoff frequency(f_(T)),and maximum oscillation frequency(f_(max)).The devices have almost same RON.The g_(m_max) improves as the whole small recess moves toward the source.However,a small gate to source capacitance(C_(gs))and a small drain output conductance(g_(ds))lead to the largest f_(T),although the whole small gate recess moves toward the drain leads to the smaller g_(m_max).According to the small-signal modeling,the device with the whole small recess toward drain exhibits an excellent RF characteristics,such as f_(T)=372 GHz and f_(max)=394 GHz.This result is achieved by paying attention to adjust resistive and capacitive parasitics,which play a key role in high-frequency response.展开更多
The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of ma...The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of matter at smaller scales.However,the extremely low emittance results in stronger sextupole magnet strengths,leading to high natural chromaticity.This necessitates the use of sextupole magnets to correct the natural chromaticity.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a lattice was designed for the storage ring that can achieve an ultra-low natural emittance of 72.2 pm·rad at the beam energy of 3.5 GeV.However,the significant detuning effects,driven by high second-order resonant driving terms due to strong sextupoles,will degrade the performance of the facility.To resolve this issue,installation of octupoles in the SSRF-U storage ring has been planned.This paper presents the study results on configuration selection and optimization method for the octupoles.An optimal solution for the SSRF-U storage ring was obtained to effectively mitigate the amplitude-dependent tune shift and the second-order chromaticity,consequently leading to an increased dynamic aperture(DA),momentum acceptance(MA),and reduced sensitivity to magnetic field errors.展开更多
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This...In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.展开更多
Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering...Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering activity,it also presents challenges such as the necessity for high reaction temperatures and difficulties in achieving uniform mixing of its raw materials.This study presents a comprehensive investigation into preparation process of AlN nanopowders using a combination of hydrothermal synthesis and CRN.In the hydrothermal reaction,a homogeneous composite precursor consisting of carbon and boehmite(γ-AlOOH)is synthesized at 200℃using aluminum nitrate as the aluminum source,sucrose as the carbon source,and urea as the precipitant.During the hydrothermal process,the precursor develops a core-shell structure,with boehmite tightly coated with carbon(γ-AlOOH@C)due to electrostatic attraction.Compared with conventional precursor,the hydrothermal hybrid offers many advantages,such as ultrafine particles,uniform particle size distribution,good dispersion,high reactivity,and environmental friendliness.The carbon shell enhances thermodynamic stability of γ-Al_(2)O_(3) compared to the corundum phase(α-Al_(2)O_(3))by preventing the loss of the surface area in alumina.This stability enables γ-Al_(2)O_(3) to maintain high reactivity during CRN process,which initiates at 1300℃,and concludes at 1400℃.The underlying mechanisms are substantiated through experiments and thermodynamic calculations.This research provides a robust theoretical and experimental foundation for the hydrothermal combined carbothermal preparation of non-oxide ceramic nanopowders.展开更多
Stegolophodon is an age-informative genus of mammals that had a widespread distribution during the Neogene.This paper reports the discovery of Stegolophodon fossils from the Middle Miocene lower Fotan Formation at the...Stegolophodon is an age-informative genus of mammals that had a widespread distribution during the Neogene.This paper reports the discovery of Stegolophodon fossils from the Middle Miocene lower Fotan Formation at the Zhangpu locality,Fujian Province,China.This discovery represents the first evidence of Neogene proboscidean fossils in southeastern China.The newly found molar materials have low tooth crowns,very straight lophs/lophids,and an indistinct median sulcus.The mesoconelets and posterior cingulum are well-developed,while the second posterior pretrite central conule is significantly reduced.These specimens closely resemble Stegolophodon pseudolatidens in cheek tooth morphology,and can thus be attributed to the same species.This discovery fills a gap in the fossil record of large mammals in this region during the Neogene and provides valuable insights into the evolution of proboscideans and paleoenvironments.展开更多
Several tritylodontid taxa have been reported from the Upper Jurassic of the Wucaiwan area in the Junggar Basin of Xinjiang,northwestern China,including Yuanotherium minor.The original study described the partially pr...Several tritylodontid taxa have been reported from the Upper Jurassic of the Wucaiwan area in the Junggar Basin of Xinjiang,northwestern China,including Yuanotherium minor.The original study described the partially preserved postcanine teeth in the middle of the left upper maxilla.After detailed re-examination of the specimen and by CT scanning,3D reconstruction,and scanning electron microscopy observations,we provided a more detailed description of the osteology,neurosensory,and tooth wear pattern for all the bones preserved in this specimen and clarified some characters.Based on new information about the cusp wear pattern,the chewing movement pattern of the dentition and detailed cusp morphology,we discussed the cuspal homology of upper cheek teeth of tritylodontids and postulate a standardized method for cusp identification.We hypothesize that the unique maxilla characteristics furnish the evidence for transitional stages about the evolution of the upper jaw-palate structure in tritylodontids.展开更多
Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)...Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.展开更多
A controversial taxon,Hipparion plocodus,is reviewed in the present study.Hi.plocodus has been confirmed to be a valid species with definite diagnostic characteristics,represented by cranial specimens from Baode,Shanx...A controversial taxon,Hipparion plocodus,is reviewed in the present study.Hi.plocodus has been confirmed to be a valid species with definite diagnostic characteristics,represented by cranial specimens from Baode,Shanxi Province.The phylogenetic analysis performed in the present study,with a new matrix,shows that Hi.plocodus forms a monophyletic group with a European species,Hippotherium malpassii.Actually,no close relationship between so-called Hm.malpassii and the genus Hippotherium has been identified,and the record of stratigraphic range of this genus in late stage of Late Miocene is currently absent.Herein previously Hi.plocodus and Hm.malpassii have both attributed into“Hipparion”before the discovery of better material.Evolutionary stages and correlative absolute age showed that these two species should derive independently from some primitive clade.During the late stage of the Late Miocene,the development of the Asian summer monsoon enhanced the humidity of China,with forest and wood habitats expanding considerably under this setting.As the result,one Eurasian closed-habitat lineage thus extended its range into China,which had become very suited for it,give rise to“Hi.”plocodus.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re...Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.展开更多
In the realm of optoelectronics,photodetectors play pivotal roles,with applications spanning from high-speed data communication to precise environmental sensing.Despite the advancements,conventional photodetectors gra...In the realm of optoelectronics,photodetectors play pivotal roles,with applications spanning from high-speed data communication to precise environmental sensing.Despite the advancements,conventional photodetectors grapple with challenges with response speed and dark current.In this study,we present a photodetector based on a lateral MoTe_(2)p-n junction,defined by a semi-floating ferroelectric gate.The strong ferroelectric fields and the depletion region of the p-n junction in the device are notably compact,which diminish the carrier transit time,thereby enhancing the speed of the photoelectric response.The non-volatile MoTe_(2)homojunction,under the influence of external gate voltage pulses,can alter the orientation of the intrinsic electric field within the junction.As a photovoltaic detector,it achieves an ultra-low dark current of 20 pA,and a fast photo response of 2μs.The spectral response is extended to the shortwave infrared range at 1550 nm.Furthermore,a logic computing system with light/no light as binary input is designed to convert the current signal to the voltage output.This research not only underscores the versatility of 2D materials in the realm of sophisticated photodetector design but also heralds new avenues for their application in energy-efficient,high-performance optoelectronic devices.展开更多
Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,t...Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.展开更多
Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective al...Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.展开更多
Here we report a left cheek plate of Psarolepis,a postparietal shield of Youngolepis,a skull of Diabolepis,and a scale of Styloichthys from the Lianhuashan and Nahkaoling formations(Lochkovian,Lower Devonian)of Nannin...Here we report a left cheek plate of Psarolepis,a postparietal shield of Youngolepis,a skull of Diabolepis,and a scale of Styloichthys from the Lianhuashan and Nahkaoling formations(Lochkovian,Lower Devonian)of Nanning,Guangxi.This marks the first report of Diabolepis and Styloichthys beside Qujing,Yunnan,and the latest occurrence of Psarolepis to date.The fossil community displays significant similarities to the Xujiachong Assemblage,and provides new data for the Lower Devonian stratigraphic correlation between southwestern China and northern Vietnam.Given the latest dating constraint based on the conodont evidence,we regard that the Xujiachong Assemblage has a much longer range than previously supposed,extending from the latest Lochkovian to the end of Pragian.We propose that the transition of the Nahkaoling and Lianhuashan formations in Nanning might correspond to the Guijiatun Formation in Qujing.The relatively large size of fish individuals from Guangxi is probably attributed to the increase in the oxygen content of the ocean.展开更多
In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with ...In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with the high power density of supercapacitors,have emerged as promising candidates.However,challenges such as poor capacity matching and limited energy density still hinder their practical application.Carbon nanofibers(CNFs),with their high specific surface area,excellent electrical conductivity,mechanical flexibility,and strong compatibility with active materials,are regarded as ideal electrode frameworks for LICs.This review summarizes key strategies to improve the electrochemical performance of CNF-based LICs,including structural engineering,heteroatom doping,and hybridization with transition metal oxides.The underlying mechanisms of each approach are discussed in detail,with a focus on their roles in improving capacitance,energy density,and cycling stability.This review aims to provide insights into material design and guide future research toward high-performance LICs for next-generation energy storage applications.展开更多
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra...CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.展开更多
For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of t...For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.展开更多
This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investi...This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.展开更多
Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response me...Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.展开更多
基金Supported by the Terahertz Multi User RF Transceiver System Development Project(Z211100004421012).
文摘In this work,we investigate the impact of the whole small recess offset on DC and RF characteristics of InP high electron mobility transistors(HEMTs).L_(g)=80 nm HEMTs are fabricated with a double-recessed gate process.We focus on their DC and RF responses,including the maximum transconductance(g_(m_max)),ON-resistance(R_(ON)),current-gain cutoff frequency(f_(T)),and maximum oscillation frequency(f_(max)).The devices have almost same RON.The g_(m_max) improves as the whole small recess moves toward the source.However,a small gate to source capacitance(C_(gs))and a small drain output conductance(g_(ds))lead to the largest f_(T),although the whole small gate recess moves toward the drain leads to the smaller g_(m_max).According to the small-signal modeling,the device with the whole small recess toward drain exhibits an excellent RF characteristics,such as f_(T)=372 GHz and f_(max)=394 GHz.This result is achieved by paying attention to adjust resistive and capacitive parasitics,which play a key role in high-frequency response.
文摘The next generation of synchrotron radiation light sources features extremely low emittance,enabling the generation of synchrotron radiation with significantly higher brilliance,which facilitates the exploration of matter at smaller scales.However,the extremely low emittance results in stronger sextupole magnet strengths,leading to high natural chromaticity.This necessitates the use of sextupole magnets to correct the natural chromaticity.For the Shanghai Synchrotron Radiation Facility Upgrade(SSRF-U),a lattice was designed for the storage ring that can achieve an ultra-low natural emittance of 72.2 pm·rad at the beam energy of 3.5 GeV.However,the significant detuning effects,driven by high second-order resonant driving terms due to strong sextupoles,will degrade the performance of the facility.To resolve this issue,installation of octupoles in the SSRF-U storage ring has been planned.This paper presents the study results on configuration selection and optimization method for the octupoles.An optimal solution for the SSRF-U storage ring was obtained to effectively mitigate the amplitude-dependent tune shift and the second-order chromaticity,consequently leading to an increased dynamic aperture(DA),momentum acceptance(MA),and reduced sensitivity to magnetic field errors.
基金Supported by the National Pre-research Program during the 14th Five-Year Plan(514010405)。
文摘In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method.
基金National Key Research and Development Program of China(2022YFB3708500,2023YFB3611000)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2020ZZ109)。
文摘Currently,the carbothermal reduction-nitridation(CRN)process is the predominant method for preparing aluminum nitride(AlN)powder.Although AlN powder prepared by CRN process exhibits high purity and excellent sintering activity,it also presents challenges such as the necessity for high reaction temperatures and difficulties in achieving uniform mixing of its raw materials.This study presents a comprehensive investigation into preparation process of AlN nanopowders using a combination of hydrothermal synthesis and CRN.In the hydrothermal reaction,a homogeneous composite precursor consisting of carbon and boehmite(γ-AlOOH)is synthesized at 200℃using aluminum nitrate as the aluminum source,sucrose as the carbon source,and urea as the precipitant.During the hydrothermal process,the precursor develops a core-shell structure,with boehmite tightly coated with carbon(γ-AlOOH@C)due to electrostatic attraction.Compared with conventional precursor,the hydrothermal hybrid offers many advantages,such as ultrafine particles,uniform particle size distribution,good dispersion,high reactivity,and environmental friendliness.The carbon shell enhances thermodynamic stability of γ-Al_(2)O_(3) compared to the corundum phase(α-Al_(2)O_(3))by preventing the loss of the surface area in alumina.This stability enables γ-Al_(2)O_(3) to maintain high reactivity during CRN process,which initiates at 1300℃,and concludes at 1400℃.The underlying mechanisms are substantiated through experiments and thermodynamic calculations.This research provides a robust theoretical and experimental foundation for the hydrothermal combined carbothermal preparation of non-oxide ceramic nanopowders.
文摘Stegolophodon is an age-informative genus of mammals that had a widespread distribution during the Neogene.This paper reports the discovery of Stegolophodon fossils from the Middle Miocene lower Fotan Formation at the Zhangpu locality,Fujian Province,China.This discovery represents the first evidence of Neogene proboscidean fossils in southeastern China.The newly found molar materials have low tooth crowns,very straight lophs/lophids,and an indistinct median sulcus.The mesoconelets and posterior cingulum are well-developed,while the second posterior pretrite central conule is significantly reduced.These specimens closely resemble Stegolophodon pseudolatidens in cheek tooth morphology,and can thus be attributed to the same species.This discovery fills a gap in the fossil record of large mammals in this region during the Neogene and provides valuable insights into the evolution of proboscideans and paleoenvironments.
文摘Several tritylodontid taxa have been reported from the Upper Jurassic of the Wucaiwan area in the Junggar Basin of Xinjiang,northwestern China,including Yuanotherium minor.The original study described the partially preserved postcanine teeth in the middle of the left upper maxilla.After detailed re-examination of the specimen and by CT scanning,3D reconstruction,and scanning electron microscopy observations,we provided a more detailed description of the osteology,neurosensory,and tooth wear pattern for all the bones preserved in this specimen and clarified some characters.Based on new information about the cusp wear pattern,the chewing movement pattern of the dentition and detailed cusp morphology,we discussed the cuspal homology of upper cheek teeth of tritylodontids and postulate a standardized method for cusp identification.We hypothesize that the unique maxilla characteristics furnish the evidence for transitional stages about the evolution of the upper jaw-palate structure in tritylodontids.
文摘Filter capacitors play an important role in altern-ating current(AC)-line filtering for stabilizing voltage,sup-pressing harmonics,and improving power quality.However,traditional aluminum electrolytic capacitors(AECs)suffer from a large size,short lifespan,low power density,and poor reliability,which limits their use.In contrast,ultrafast supercapacitors(SCs)are ideal for replacing commercial AECs because of their extremely high power densities,fast charging and discharging,and excellent high-frequency re-sponse.We review the design principles and key parameters for ultrafast supercapacitors and summarize research pro-gress in recent years from the aspects of electrode materials,electrolytes,and device configurations.The preparation,structures,and frequency response performance of electrode materials mainly consisting of carbon materials such as graphene and carbon nanotubes,conductive polymers,and transition metal compounds,are focused on.Finally,future research directions for ultrafast SCs are suggested.
文摘A controversial taxon,Hipparion plocodus,is reviewed in the present study.Hi.plocodus has been confirmed to be a valid species with definite diagnostic characteristics,represented by cranial specimens from Baode,Shanxi Province.The phylogenetic analysis performed in the present study,with a new matrix,shows that Hi.plocodus forms a monophyletic group with a European species,Hippotherium malpassii.Actually,no close relationship between so-called Hm.malpassii and the genus Hippotherium has been identified,and the record of stratigraphic range of this genus in late stage of Late Miocene is currently absent.Herein previously Hi.plocodus and Hm.malpassii have both attributed into“Hipparion”before the discovery of better material.Evolutionary stages and correlative absolute age showed that these two species should derive independently from some primitive clade.During the late stage of the Late Miocene,the development of the Asian summer monsoon enhanced the humidity of China,with forest and wood habitats expanding considerably under this setting.As the result,one Eurasian closed-habitat lineage thus extended its range into China,which had become very suited for it,give rise to“Hi.”plocodus.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
基金supported by the National Key R&D Program of China(2024YFB4106400)National Natural Science Foundation of China(22209200,52302331)。
文摘Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)Natural Science Foundation of China(62222413,62025405,62105100,62075228 and 62334001)+1 种基金Natural Science Foundation of Shanghai(23ZR1473400)Hundred Talents Program of the Chinese Academy of Sciences。
文摘In the realm of optoelectronics,photodetectors play pivotal roles,with applications spanning from high-speed data communication to precise environmental sensing.Despite the advancements,conventional photodetectors grapple with challenges with response speed and dark current.In this study,we present a photodetector based on a lateral MoTe_(2)p-n junction,defined by a semi-floating ferroelectric gate.The strong ferroelectric fields and the depletion region of the p-n junction in the device are notably compact,which diminish the carrier transit time,thereby enhancing the speed of the photoelectric response.The non-volatile MoTe_(2)homojunction,under the influence of external gate voltage pulses,can alter the orientation of the intrinsic electric field within the junction.As a photovoltaic detector,it achieves an ultra-low dark current of 20 pA,and a fast photo response of 2μs.The spectral response is extended to the shortwave infrared range at 1550 nm.Furthermore,a logic computing system with light/no light as binary input is designed to convert the current signal to the voltage output.This research not only underscores the versatility of 2D materials in the realm of sophisticated photodetector design but also heralds new avenues for their application in energy-efficient,high-performance optoelectronic devices.
基金Supported by Jilin Provincial Scientific and Technological Development Program(20230508109RC,20230201051GX,20220201091GX)National Natural Science Foundation of China(62035013,61275235)。
文摘Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.
基金Supported by National Key Research and Development Program in the 14th five year plan(2021YFA1200700)Strategic Priority Re⁃search Program of the Chinese Academy of Sciences(XDB0580000)Natural Science Foundation of China(62025405,62104235,62105348).
文摘Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.
文摘Here we report a left cheek plate of Psarolepis,a postparietal shield of Youngolepis,a skull of Diabolepis,and a scale of Styloichthys from the Lianhuashan and Nahkaoling formations(Lochkovian,Lower Devonian)of Nanning,Guangxi.This marks the first report of Diabolepis and Styloichthys beside Qujing,Yunnan,and the latest occurrence of Psarolepis to date.The fossil community displays significant similarities to the Xujiachong Assemblage,and provides new data for the Lower Devonian stratigraphic correlation between southwestern China and northern Vietnam.Given the latest dating constraint based on the conodont evidence,we regard that the Xujiachong Assemblage has a much longer range than previously supposed,extending from the latest Lochkovian to the end of Pragian.We propose that the transition of the Nahkaoling and Lianhuashan formations in Nanning might correspond to the Guijiatun Formation in Qujing.The relatively large size of fish individuals from Guangxi is probably attributed to the increase in the oxygen content of the ocean.
文摘In the context of rapid economic development,the pursuit of sustainable energy solutions has become a major challenge.Lithium-ion capacitors(LICs),which integrate the high energy density of lithium-ion batteries with the high power density of supercapacitors,have emerged as promising candidates.However,challenges such as poor capacity matching and limited energy density still hinder their practical application.Carbon nanofibers(CNFs),with their high specific surface area,excellent electrical conductivity,mechanical flexibility,and strong compatibility with active materials,are regarded as ideal electrode frameworks for LICs.This review summarizes key strategies to improve the electrochemical performance of CNF-based LICs,including structural engineering,heteroatom doping,and hybridization with transition metal oxides.The underlying mechanisms of each approach are discussed in detail,with a focus on their roles in improving capacitance,energy density,and cycling stability.This review aims to provide insights into material design and guide future research toward high-performance LICs for next-generation energy storage applications.
文摘CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.
文摘For space-borne gravitational wave detection missions based on the heterodyne interferometry principle,tilt-to-length(TTL)coupling noise is an important optical noise source,significantly influencing the accuracy of the measurement system.We present a method for analyzing TTL coupling noise under the joint influence of multiple factors.An equivalent simulated optical bench for the test mass interferometer was designed,and Gaussian beam tracing was adopted to simulate beam propagation.By simulating the interference signal,it can analyze the impact of various factors on the TTL coupling noise,including positional,beam parameters,detector parameters,and signal definition factors.On this basis,a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement,and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis.The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect(lateral)significantly influence the TTL coupling noise in the test mass interferometer.The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.
基金supported by the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2023yjrc51)the National Natural Science Foundation of China(22172184)+2 种基金the Foundation of State Key Laboratory of Coal Conversion(J24-25-603)the Fundamental Research Project of ICC-CAS(SCJC-DT-2023-01)Weiqiao-UCAS Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-015)。
文摘This study explores the controllable synthesis of CuAlO_(2) using copper hydroxide and pseudo-boehmite powders as raw materials via a simple solid-phase ball milling method,along with its catalytic performance investigation in methanol steam reforming(MSR).Various catalysts were prepared under different conditions,such as calcination temperature,calcination atmosphere,and heating rate.Characterization techniques including BET,XRD,XPS,SEM and H2-TPR were employed to analyze the samples.The results revealed significant effects of calcination temperature on the phase compositions,specific surface area,reduction performance,and surface properties of the CA-T catalysts.Based on the findings,a synthesis route of CuAlO_(2) via the solid-phase method was proposed,highlighting the importance of high calcination temperature,nitrogen atmosphere,and low heating rate for CuAlO_(2) formation.Catalytic evaluation data demonstrated that CuAlO_(2) could catalyze MSR without pre-reduction,with the catalytic performance of CA-T catalysts being notably influenced by calcination temperature.Among the prepared catalysts,the CA-1100 catalyst exhibited the highest catalytic activity and stability.The findings of this study might be useful for the further study of the catalytic material for sustained release catalysis,including the synthesis of catalytic materials and the regulation of sustained release catalytic performance.
文摘Nitrogen doping has been widely used to improve the performance of carbon electrodes in supercapacitors,particularly in terms of their high-frequency response.However,the charge storage and electrolyte ion response mechanisms of different nitrogen dopants at high frequencies are still unclear.In this study,melamine foam carbons with different configurations of surfacedoped N were formed by gradient carbonization,and the effects of the configurations on the high-frequency response behavior of the supercapacitors were analyzed.Using a combination of experiments and first-principle calculations,we found that pyrrolic N,characterized by a higher adsorption energy,increases the charge storage capacity of the electrode at high frequencies.On the other hand,graphitic N,with a lower adsorption energy,increases the speed of ion response.We propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications,offering a more universal approach for improving the performance of N-doped carbon materials in supercapacitors.