The Co@NC catalysts with different morphologies were prepared by two step process,solvent control growth and pyrolysis method.The polyhedral Co@NC-67P-450 catalyst has a relatively high CoNx content and exhibits excel...The Co@NC catalysts with different morphologies were prepared by two step process,solvent control growth and pyrolysis method.The polyhedral Co@NC-67P-450 catalyst has a relatively high CoNx content and exhibits excellent phenol hydrogenation activity(conversion 96.9%)at 160℃,3 MPa,which is higher than that of leaf shaped Co@NC-67L-450 catalyst(conversion 75.4%).We demonstrated Co_(3)O_(4)was reduced to the Co^(0)during the reaction.Moreover,CoNx species contribute to the superior hydrogenation activity of phenol.The Co-based catalysts can be easily recovered through the magnetic separation and performed the high stability.展开更多
Ru nanoparticles with fcc and hcp crystal phases were obtained by chemical reduction method using different precursors and reducing agents,and their catalytic properties in ammonia synthesis were compared.The catalyti...Ru nanoparticles with fcc and hcp crystal phases were obtained by chemical reduction method using different precursors and reducing agents,and their catalytic properties in ammonia synthesis were compared.The catalytic reaction rate(666.4μmol·h^(−1)·g^(−1))of fcc Ru catalyst is higher than that of hcp Ru(378.9μmol·h^(−1)·g^(−1))at the reaction temperature(400℃)and pressure(1 MPa).The results indicate that the exposed crystal faces have a certain impact on the catalytic activity.The dissociation ability to N_(2) of fcc Ru exposed(111)and(200)is better than that of hcp Ru exposed(100).When the ruthenium catalyst was loaded on rod-like CeO_(2) support,the ammonia synthesis activity was further improved.The ammonia synthesis activity of fcc Ru/CeO_(2) is 1.4 times higher than that of hcp Ru/CeO_(2) under the test conditions.展开更多
基金The National Natural Science Foundation of China(22102194)The Science and Technology Plan of Gansu Province(20JR10RA044)The Youth Innovation Promotion Association of CAS(2022427).
文摘The Co@NC catalysts with different morphologies were prepared by two step process,solvent control growth and pyrolysis method.The polyhedral Co@NC-67P-450 catalyst has a relatively high CoNx content and exhibits excellent phenol hydrogenation activity(conversion 96.9%)at 160℃,3 MPa,which is higher than that of leaf shaped Co@NC-67L-450 catalyst(conversion 75.4%).We demonstrated Co_(3)O_(4)was reduced to the Co^(0)during the reaction.Moreover,CoNx species contribute to the superior hydrogenation activity of phenol.The Co-based catalysts can be easily recovered through the magnetic separation and performed the high stability.
基金The National Natural Science Foundation of China(22102194)The Science and Technology Plan of Gansu Province(24JRRA067,23ZDFA016)The Youth Innovation Promotion Association of CAS(2022427).
文摘Ru nanoparticles with fcc and hcp crystal phases were obtained by chemical reduction method using different precursors and reducing agents,and their catalytic properties in ammonia synthesis were compared.The catalytic reaction rate(666.4μmol·h^(−1)·g^(−1))of fcc Ru catalyst is higher than that of hcp Ru(378.9μmol·h^(−1)·g^(−1))at the reaction temperature(400℃)and pressure(1 MPa).The results indicate that the exposed crystal faces have a certain impact on the catalytic activity.The dissociation ability to N_(2) of fcc Ru exposed(111)and(200)is better than that of hcp Ru exposed(100).When the ruthenium catalyst was loaded on rod-like CeO_(2) support,the ammonia synthesis activity was further improved.The ammonia synthesis activity of fcc Ru/CeO_(2) is 1.4 times higher than that of hcp Ru/CeO_(2) under the test conditions.