In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize...In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.展开更多
The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.How...The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.展开更多
The effect of external vibration on the velocity uniformity of the moving mechanism of the angular mir⁃ror translational Fourier transform interferometer(hereinafter referred to as interferometer)can be quantitatively...The effect of external vibration on the velocity uniformity of the moving mechanism of the angular mir⁃ror translational Fourier transform interferometer(hereinafter referred to as interferometer)can be quantitatively analysed by the interferometer optical range difference velocity stability.The article proposes a more comprehen⁃sive method of analysing the optical range difference velocity uniformity for the reliability of the interferometer ki⁃nematic mechanism under the influence of on-orbit microvibration in the process of space spectroscopy detection.The method incorporates the structural response of the interferometer caused by external excitation into the stabili⁃ty analysis as one of the influencing factors,so as to reflect the reliability of the interferometer in orbit more realis⁃tically,and judge the microvibration criticality that the interferometer can withstand more accurately.At the same time,an optical surface model of the interferometer is established to further theoretically characterise the effect of microvibration on the homogeneity of the interferometric mechanism.The method discussed in the article pro⁃vides a way of thinking for the judgement of the reliability of the mechanism movement under the external excita⁃tion perturbation as well as the research on the optimisation of the mechanism control.展开更多
基金Supported by the National Natural Science Foundation of China(62174092)the Open Fund of State Key Laboratory of Infrared Physics(SITP-NLIST-ZD-2023-04)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)。
文摘In this paper,we propose an RLC equivalent circuit model theory which can accurately predict the spectral response and resonance characteristics of metamaterial absorption structures,extend its design,and characterize the parameters of the model in detail.By employing this model,we conducted computations to characterize the response wavelength and bandwidth of variously sized metamaterial absorbers.A comparative analysis with Finite Difference Time Domain(FDTD)simulations demonstrated a remarkable level of consistency in the results.The designed absorbers were fabricated using micro-nano fabrication processes,and were experimentally tested to demonstrate absorption rates exceeding 90%at a wavelength of 9.28μm.The predicted results are then compared with test results.The comparison reveals good consistency in two aspects of the resonance responses,thereby confirming the rationality and accuracy of this model.
基金Supported by the National Key Research and Development Program of China(2022YFA1404602)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)+3 种基金the National Natural Science Foundation of China(U23B2045,62305362)the Program of Shanghai Academic/Technology Research Leader(22XD1424400)the Fund of SITP Innovation Foundation(CX-461 and CX-522)Special Project to Seize the Commanding Heights of Science and Technology of Chinese Academy of Sciences,subtopic(GJ0090406-6).
文摘The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.
文摘The effect of external vibration on the velocity uniformity of the moving mechanism of the angular mir⁃ror translational Fourier transform interferometer(hereinafter referred to as interferometer)can be quantitatively analysed by the interferometer optical range difference velocity stability.The article proposes a more comprehen⁃sive method of analysing the optical range difference velocity uniformity for the reliability of the interferometer ki⁃nematic mechanism under the influence of on-orbit microvibration in the process of space spectroscopy detection.The method incorporates the structural response of the interferometer caused by external excitation into the stabili⁃ty analysis as one of the influencing factors,so as to reflect the reliability of the interferometer in orbit more realis⁃tically,and judge the microvibration criticality that the interferometer can withstand more accurately.At the same time,an optical surface model of the interferometer is established to further theoretically characterise the effect of microvibration on the homogeneity of the interferometric mechanism.The method discussed in the article pro⁃vides a way of thinking for the judgement of the reliability of the mechanism movement under the external excita⁃tion perturbation as well as the research on the optimisation of the mechanism control.