本文针对大规模高帧频读出电路的数字信号输出建立了高速数据传输模型。首先由集总参数模型得到传输电路3 d B带宽及响应时间常数与各器件参数之间的关系,指明了输出级MOS管的尺寸及传输线负载是决定高速时域响应特性的关键参数。进一...本文针对大规模高帧频读出电路的数字信号输出建立了高速数据传输模型。首先由集总参数模型得到传输电路3 d B带宽及响应时间常数与各器件参数之间的关系,指明了输出级MOS管的尺寸及传输线负载是决定高速时域响应特性的关键参数。进一步采用分布参数模型,利用Elmore延时模型更精确地确定了响应时间常数的数学解析式,获得了可使带宽最大化的输出级尺寸的最优设计。仿真结果表明,在典型的64×64面阵功耗和面积约束条件下,优化后传输门和复合逻辑门两种三态传输电路的输出3 dB带宽分别可达293 MHz和395 MHz。展开更多
目前红外探测器采用传统读出方法很难通过一次积分实现其本身的动态范围。为实现红外探测器的大动态范围不换档读出,引入脉冲频率调制(Pulse Frequency Modulation,PFM)结构,同时为保证弱信号时的注入效率,结合CTIA输入级,对红外探测器...目前红外探测器采用传统读出方法很难通过一次积分实现其本身的动态范围。为实现红外探测器的大动态范围不换档读出,引入脉冲频率调制(Pulse Frequency Modulation,PFM)结构,同时为保证弱信号时的注入效率,结合CTIA输入级,对红外探测器不换档大动态范围读出方法进行研究。提出一种CTIA输入级脉冲频率调制(PFM)读出方法,在系统级层面搭建实验系统并结合短波红外InGaAs单元探测器进行数字量化实验。详细分析了强信号时由系统结构延迟时间引起的转换线性度问题,并建立非理想条件下的数字量化转换模型。实验结果显示,提出的CTIA输入级PFM红外探测器读出方法动态范围达到97 dB,为红外探测器不换档大动态范围读出提供了一种可行方案,并为数字化读出电路设计奠定理论基础。展开更多
文摘目前红外探测器采用传统读出方法很难通过一次积分实现其本身的动态范围。为实现红外探测器的大动态范围不换档读出,引入脉冲频率调制(Pulse Frequency Modulation,PFM)结构,同时为保证弱信号时的注入效率,结合CTIA输入级,对红外探测器不换档大动态范围读出方法进行研究。提出一种CTIA输入级脉冲频率调制(PFM)读出方法,在系统级层面搭建实验系统并结合短波红外InGaAs单元探测器进行数字量化实验。详细分析了强信号时由系统结构延迟时间引起的转换线性度问题,并建立非理想条件下的数字量化转换模型。实验结果显示,提出的CTIA输入级PFM红外探测器读出方法动态范围达到97 dB,为红外探测器不换档大动态范围读出提供了一种可行方案,并为数字化读出电路设计奠定理论基础。