期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
五对角线逆M-矩阵的Hadamard积(英文)
1
作者
杨尚俊
吕敏
《中国科学技术大学学报》
CAS
CSCD
北大核心
2004年第6期661-667,共7页
令M-1记所有n×n逆M矩阵的集合,Sk(k>1)记所有实矩阵其每个k×k主子矩阵都是逆M矩阵的集合.首先证得如果A,B∈M-1分别是上、下Hessenberg矩阵,则对任意H1,H2∈S2,AB和(AH1)(BH2)都是三对角线矩阵(因而是完全非负矩阵);其次...
令M-1记所有n×n逆M矩阵的集合,Sk(k>1)记所有实矩阵其每个k×k主子矩阵都是逆M矩阵的集合.首先证得如果A,B∈M-1分别是上、下Hessenberg矩阵,则对任意H1,H2∈S2,AB和(AH1)(BH2)都是三对角线矩阵(因而是完全非负矩阵);其次证得如果A=(aij),B=(bij)(M-1满足aji=bij=0,i-j≥3,则对任意H1,H2∈S3,AB和(AH1)(BH2)都是五对角线逆M矩阵.
展开更多
关键词
Hadmard积
逆M-矩阵
三对角线的
Hessenerg矩阵
五对角线的
在线阅读
下载PDF
职称材料
题名
五对角线逆M-矩阵的Hadamard积(英文)
1
作者
杨尚俊
吕敏
机构
安徽大学
数学
系
中国科学技术大数学系
出处
《中国科学技术大学学报》
CAS
CSCD
北大核心
2004年第6期661-667,共7页
基金
NationalNaturalScienceFoundationofChina(60375010).
文摘
令M-1记所有n×n逆M矩阵的集合,Sk(k>1)记所有实矩阵其每个k×k主子矩阵都是逆M矩阵的集合.首先证得如果A,B∈M-1分别是上、下Hessenberg矩阵,则对任意H1,H2∈S2,AB和(AH1)(BH2)都是三对角线矩阵(因而是完全非负矩阵);其次证得如果A=(aij),B=(bij)(M-1满足aji=bij=0,i-j≥3,则对任意H1,H2∈S3,AB和(AH1)(BH2)都是五对角线逆M矩阵.
关键词
Hadmard积
逆M-矩阵
三对角线的
Hessenerg矩阵
五对角线的
Keywords
Hadamard product
inverse M-matrix
tridiagonal
Hessenberg matrix
five-diagonal
分类号
O151.21 [理学—基础数学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
五对角线逆M-矩阵的Hadamard积(英文)
杨尚俊
吕敏
《中国科学技术大学学报》
CAS
CSCD
北大核心
2004
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部